~					
U.S.N					
0.0.1					

10

Contd....2

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)
Fifth Semester, B.E. - Electronics and Communication Engineering

Semester End Examination; Dec - 2016/Jan - 2017 Digital Signal Processing

Time: 3 hrs Max. Marks: 100

Note: i) Answer questions from each unit choosing among internal choice.

 $H(2\pi k/15) = 1$; for k = 0,1,2,3

= 0.4; for k = 4

; for k = 5, 6, 7

ii) Any missing data can be suitably assumed making a clear mention of the same.

	iii) Filter tables can be used if required.							
	UNIT - I							
1 a.	Compute 4-point DFT and 8-point DFT of causal three sample sequence given by,							
	$x(n) = 1/3$; $0 \le n \le 2 = 0$; elsewhere							
b.	b. Show that Multiplication of two DFTs in frequency domain corresponds to Circular							
	convolution of corresponding sequences in time domain. Provide an example.							
2 a.	2 a. X (k) is DFT of 8-point real sequence x(n) whose first few samples are given by [14, 1+2j, 0,							
	-1-3j, 2]. If $x(n)$ is multiplied by $e^{j6\pi n/8}$ to yield $x1(n)$, determine $X1(k)$.							
b.	b. Computer linear and circular convolution of two sequences using DFT.							
	$x(n) = [1 \ 2]; \text{ and } h(n) = [2,1]$	8						
c.	State Parseval's theorem and using the same determine Energy in $x(n) = [1,0,1,0]$	4						
	UNIT - II							
3 a.	A LSI system is characterized by its impulse response h(n) = [0.5, -0.5], a long sequence							
	x(n) = [1, 2,3,2,3,1,2,3,3,3] is applied to this system Using Overlap- Add method determine :							
	(i) DFT length if the input block length is 4 (ii) Input blocks (iii) Output for given input							
b.	b. Derive the 8-point DIT FFT flow chart starting from basic definition of DFT							
4 a.	Given a 8-point sequence $x(n) = [3, 1, 3, 1, 3, -1, 3, -1]$, compute the DFT of this sequence	10						
	using 4-point DIT FFT only once.							
b.	Substantiate the need for Chirp –Z transform with two reasons.	4						
c.	Compare Butterfly operations of DIT and DIF algorithm for similarities and Dissimilarities	6						
	UNIT - III							
5 a.	Design a linear phase FIR highpass filter using hamming window, with a cutoff frequency,							
	$\omega_c = 0.8\pi$ rad/sample and $N=7$. Sketch its impulse response.							
b.	b. Compare FIR and IIR filters on various performance parameters							
c.	Discuss window parameters and their corresponding effect on filter Performance	5						
6 a.	Determine the coefficients of a linear –phase FIR filter of length $N=15$ which has a symmetric							
	impulse response and a frequency response that satisfies the conditions,							

b. Explain the procedure of window based FIR filter design.
 c. Justify necessity of Linear Phase filters in specific applications
 5
 UNIT - IV

10

10

8

12

10

- 7 a. Discuss Impulse Invariance and Bilinear Transformation techniques with regard to preserving frequency response characteristics while mapping from analog to digital domain.
 - b. Design a Butterworth digital lowpass filter using Bilinear transformation by taking $T=1\,$ sec, to satisfy the following specifications.
 - $0.6 \le |H(e^{jw})| \le 1.0$; $0 \le \omega \le 0.35\pi$ $|H(e^{jw})| \le 0.1$; $0.7 \pi \le \omega \le \pi$
- 8 a. Determine the poles of Lowpass Butterworth filter for N=3. Sketch the location of poles on s-plane and hence determine the normalized transfer function of low pass filter.
- b. Design a Chebyshev digital low pass filter using impulse invariant transformation by taking T=1 second, to meet the following specifications:
 - $$\begin{split} 0.9 & \leq |\; H(e^{jw})| \leq 1.0 \; ; \; 0 \leq \omega \leq 0.25\pi \\ |\; H(e^{jw})| & \leq \; 0.24 \qquad ; \; 0.5\pi \leq \omega \leq \pi \end{split}$$
- 9 a. Find the Direct form-II and Parallel realizations for the system described by the difference equation, y(n) = x(n) + 0.3 x(n-1) 0.4x(n-2) 0.8y(n-1) + 0.7 y(n-2)
- b. Given that $H(z) = 1/3 + 1/4 z^{-1} + 3/2 z^{-2} + 3/2 z^{-3} + 1/4 z^{-4} + 1/3 z^{-5}$ Determine whether the system is FIR or IIR and has Linear –phase or not with suitable 10 justifications, Realize the system with minimum multipliers
- 10.a Realize the given system in cascade and parallel forms.
 - $H(z) = (1 + 0.25 z^{-1}) / (1 2z^{-1} + 0.25z^{-2})(1 3z^{-1} + 0.2z^{-2}).$
- b. Derive the lattice form realization for a second-order IIR system.