	U.S.N
P.E	C.S. College of Engineering, Mandya - 571 401
T T T T T T T T T T T T T T T T T T T	(An Autonomous Institution affiliated to VTU, Belgaum)
	Seventh Semester, B.E Mechanical Engineering
	Semester End Examination; Dec – 2016/Jan - 2017
	Finite Element Method
Time: 3 hrs	Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast ONE full question from each unit.

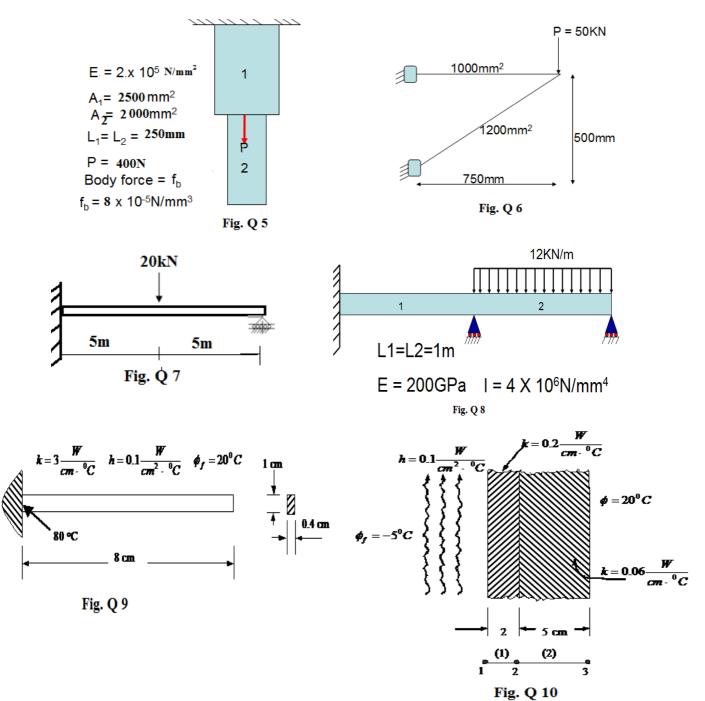
UNIT -I

1 a.	a Differentiate between Continuum method and Finite element method	6	
b.	Explain the rules to guide the placement of the nodes when obtaining approximate solution to		
	a differential equation.		
c.	Evaluate integral using Gauss quadrature formula and compare with exact value	8	
	$I = \int_0^3 (x^2 - 1) dx$		
2 a.	Explain in detail the convergence requirements for the finite element solutions.	8	
b.	Solve a set of simultaneous linear equations using Gaussian elimination method		
	$2 x_1 + 2x_2 + x_3 = 9$	12	
	$2 x_1 + x_2 \qquad = 4$		
$x_1 + x_2 + x_3 = 6$ UNIT –II			
3 a.	Explain the isoparametric, subparametric and superparametric elements	6	
b.	Draw the shape functions of a one dimensional line element with three nodes.	4	
c.	Derive shape function for quadratic quadrilateral element using Lagrangian method.	10	
4 a.	Show that interpolation function for linear triangular elements is given by	10	
	$N_i = \frac{1}{2}A_e (a_i + b_i x + c_i y)$ where $i = 1, 2, 3$	10	
b.	With example distinguish between Essential and Natural boundary conditions.	5	
c.	State the properties of stiffness matrix.	5	
UNIT -III			
5.	The thin plate of uniform thickness as shown in Fig. Q 5. In addition to the self weight, the	20	
	plate is subjected to point load of P at mid depth. Evaluate stresses in each element	20	
6.	For the structure shown in Fig. Q 6. Determine the nodal displacements	20	

UNIT -IV

7. A beam of length 10m as shown in Fig. Q 7, fixed at one end and supported by a roller at the other end carries a 20 kN concentrated load at the centre of the span. By taking the modulus of elasticity of material as 200 GPa and moment of inertia as 24x10⁻⁶ m⁴, evaluate the deflection under load

Page No... 1


Page No... 2

8. Determine the stiffness matrix, load vector and deflection on the beam shown in Fig. Q 8.

P08ME73

UNIT - V

- 9. Calculate the temperature distribution of one dimensional fin with the physical properties given below in Fig. Q9. The fin is rectangular in shape and is 8 cm long. Assume that 20 convection heat loss occurs from the end of the fin. Model the fin by four elements.
- 10. For the composite wall shown in Fig. Q10 calculate the interface temperatures

20

20