P08ME751					Page	No	1	
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Seventh Semester, B.E Mechanical Engineering Semester End Examination; Dec - 2016/Jan - 2017 I.C. Engines Time: 3 hrs Max. Marks: 100								
Time: 3 hrs	<i>TE full questions, selecting ONE full q</i>	mastion	from ag			arks:	100	
	ably missing data, if any.	luestion	jrom eu	cn unn	•			
	UNIT - I							
-	t of Fuel-air ratio on;	/····> » «	•					
(i) Efficiency		(iii) Max	kimum t	empera	ature			
(iv) Maximum p		innar 1	and are		to be	ot oper	tont	
e	e, combustion is assumed to begin at fuel ratio is 28:1, the calorific value							
product of comproducts = 297	mbustion is given by $C_v = 0$. J/kgK. If the compression ratio is 1 00 K. Find, at what percentage of stro	678+0.0 4:1 and	0013T the ten	kJ/kg	K, I ire at	R for the en	the	
•	uents of crude petroleum are classific						ents	
giving their chem	nical structure. Also mention whether	they are	saturate	ed or n	ot?			
b. Explain the effec	t of fuel volatility on the following en	igine pei	forman	ce :				
(i) Cold starting	(ii) Hot starting	(iii) Va	apour lo	ck				
(iv) Carburetor Id	cing (v) Engine Warm-up.							
	UNIT - II							
a. What are the limit of an elementary	itations of an elementary carburetor? carburetor.	With ne	at diagra	am, exj	plain	the wor	king	
b. Explain the effec	t of the following engine variables on	ignition	ı lag;					
(i) Fuel) Initial	tempera	ture an	d pres	ssure		
(iv) Electrode gap								
a. With a neat pres engine.	ssure versus crank angle diagram, ex	xplain th	e stages	s of co	ombus	tion in	S.I.	
b. Explain the effec	t of following engine variables on flam	me prop	agation	in SIE	•			
(i) Fuel-air ratio	(ii) Compression ratio (i	iii) In tal	ke tempe	erature	and p	oressure	;	
(iv) Engine load	(v) Turbulence.							
	UNIT - III							
			~					

5 a. With a neat P- θ diagram, explain the stages of combustion in CI Engine. 10

Contd....2

PO	8ME751 Page No 2							
b.	b. Explain the delay period in C.I. Engine combustion. Also explain the effect of the following							
	engine variables on delay period,							
	(i) Fuel (ii) Injection Pressure (iii) Compression ratio.							
6 a.	6 a. What are basic methods of generating air swirl in the C.I. engine combustion chambers?							
	Explain how the induction swirl is created? Give any two disadvantages of Induction swirl.							
b.	b. Sketch and explain M.A.N. 'M' combustion chamber.							
UNIT - IV								
7 a.	7 a. Draw the schematic diagram of air injection system and explain it. Give any two advantages							
	and disadvantages of an inspection system.							
b.	b. Sketch and explain :							
	(i) Pintle nozzle (ii) Pintaux nozzle.							
8 a.	8 a. Briefly discuss the effects of the following factors on the piston temperature in an engine.							
	(i) Heat transfer coefficient and combustion system (ii) Engine load	12						
	(iii) Type of cooling (iv) Engine speed.							
b.	b. Sketch and explain the thermo siphon cooling.							
UNIT - V								
9 a.	a. What is super charging? Explain the objectives of super charging.							
b.	b. With neat sketch explain, Volkswagen PCI stratified charge engine.							
10 a.	10 a. Explain how NO_x is formed during combustion? Also explain how to control the formation of							
	NO _x emission by using EGR?							
b.	Explain :							
	(i) Thermal reactor package							
	(ii) Catalytic converter package.							

* * *