P13	CS32						Page No 1					
	U.S.N											
Tin	P.E.S. College of Engineering, (An Autonomous Institution affiliated) Third Semester, B.E Computer Scie Semester End Examination; Dec Digital Logic Designet: 3 hrs	<i>to V1</i> ence - 201	U, Be and	elgau Engi	<i>m)</i> inee 2017			:: 10	00			
Not	e : Answer FIVE full questions, selecting ONE full ques	stion f	from e	each i	unit.							
	UNIT - I											
1 a.	Explain with examples ;											
	i) Positive and Negative logic								10			
	ii) NOR as universal gate											
	iii) NAND as universal gate.											
b.	Design a minimum hardware circuit for the Boolean ex	press	sion u	sing	QM te	echnic	que,		10			
	$f(\mathbf{w}, \mathbf{x}, \mathbf{y}, \mathbf{z}) = \sum m(0, 5, 6, 7, 9, 10, 13, 14, 15).$											
2 a.	Explain with examples;											
	i) De-Morgan's theorem								10			
	ii) Principle of Duality								-			
	iii) Consensuses theorem.											
b.	Consider a circuit with 4 variables input A, B, C, D and one output 'Z'. Output $Z = 1$ if B or											
	C is high, but not both. And also $Z = 1$, if all input is same. Design a minimum hardware											
	circuit using K-map.											
	UNIT - II											
3 a.	Mention the building blocks of arithmetic circuits expl	ain th	e sam	e wit	th exa	mples	s.		10			
b.	Implement the following expression using 4 : 1 MUX a	and 8	: 1 M	UX,					10			
	$f(A, B, C, D) = \Sigma m(0, 1, 5, 6, 7, 8, 9, 10, 15).$											
4 a.	Explain:											
	i) 4 : 1 MUX											
	ii) 2-bit magnitude comparator.											
b.	Implement the following using 3 : 8 decoder,											
	$f_1(A, B, C) = \Sigma m(1, 3, 4, 5)$											
	$f_2(A, B, C) = \Sigma m (0, 2, 5, 6, 7)$								5			
	$f_3(A, B, C) = \Sigma m(1, 2, 3, 6)$											
c.	Design a 6-bit odd parity generator.								5			

P13CS32

5

10

5

5

UNIT - III

5 a.	Differentiate between PLA and PAL.	5			
b.	Explain edge triggered SR Flip-Flop.	5			
c.	Giving characteristic equations, state diagram and excitation fable of JK and D Flip-Flop,				
	convert D Flip-Flop to JK Flip-Flop.	10			
6 a.	Explain JK Flip-Flop.	5			
b.	Implement the following using PLA,				
	$f_I(A, B, C) = \Sigma m (0, 2, 3, 7)$	~			
	$f_2(A, B, C) = \Sigma m (1, 2, 4, 5)$	5			
	$f_3(A, B, C) = \Sigma m(1, 3, 5, 6, 7)$				
c.	Convert SR Flip-Flop to T Flip-Flop, giving characteristic equation, excitation table and				
	state diagram of SR Flip-Flop and T Flip-Flop.	10			
	UNIT - IV				
7 a.	Giving circuit diagram, truth table and wave diagram, explain SIPO shift register (4-bit).	10			
b.					
υ.	Design a counter using JK flip flop that counts as, $2 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 4 \rightarrow \dots$	10			
8 a.	Design a counter using JK flip flop that counts as, $2 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 4 \rightarrow$ Briefly explain the different applications of shift register.	10 10			
		10			
8 a.	Briefly explain the different applications of shift register.				
8 a.	Briefly explain the different applications of shift register. Using T Flip-Flops design a synchronous counter that counts in the following sequence,	10			
8 a.	Briefly explain the different applications of shift register. Using T Flip-Flops design a synchronous counter that counts in the following sequence, $0\rightarrow 1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 6\rightarrow 7\rightarrow 0$	10			
8 a. b.	Briefly explain the different applications of shift register. Using T Flip-Flops design a synchronous counter that counts in the following sequence, $0\rightarrow 1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 6\rightarrow 7\rightarrow 0$ UNIT - V	10			
8 a. b.	Briefly explain the different applications of shift register. Using T Flip-Flops design a synchronous counter that counts in the following sequence, $0\rightarrow 1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 6\rightarrow 7\rightarrow 0$ UNIT - V Briefly explain :	10 10			

- b. Write Verilog/VHDL code to implement 3 : 8 decoder.
- c. Write Verilog/VHDL code to implement Johnson counter.
- 10 a. Explain the different A/D techniques.
 - b. Write Verilog / VHDL code to implement 8:1 MUX.
 - c. Write Verilog / VHDL code to implement 3-bit up counter and down counter.

* * *