P13CV51 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Civil Engineering Semester End Examination; Dec - 2016/Jan - 2017 **Water Supply Engineering**

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- Explain the importance and need for a planned water supply scheme of a town.
 - What is per capita demand and explain the various factors that affect the per capita demand.
 - The following population data are available for a town. Estimate the population of the town in the year 2022 using incremental increase method and arithmetical increase method.

Year	1952	1962	1972	1982	1992	2002	2012
Population	12000	16500	26800	41500	57500	68000	74100

- What is design period? Discuss the factors affecting design period of water supply scheme.
 - b. Define intake structures. What are the factors which govern selection and location of intake structure?
 - c. Water has to be supplied to a town with one lakh population at the rate of 150 litres per capita day from a river 2 km away. The difference in elevation between the lowest water level in the sump and the reservoir is 36 m. If the demand has to be supplied in 8 hours, determine the size of the main and BHP of the pumps required. Assume maximum demand as 1.5 times the average demand. Assume f = 0.0075, velocity in the pipe 2.4 m/s and efficiency of pump as 80%.

UNIT-II

- What are the common impurities found in natural sources of water and explain their effects upon its quality?
 - b. With a typical flow chart, explain the water treatment units for treating river water indicating the impurities removed at each unit.
 - c. Mention the permissible limits for the following parameters and explain the environmental significance of each: Nitrates, Iron, Fluorides and Sulphates.
- What are water borne diseases? List the water borne diseases with causative agents.
 - Differentiate between palatable water and potable water.
 - What do you understand by E-coli? How do you determine its presence in water?

UNIT - III

5 a. Define aeration process. Briefly discuss any two methods of aeration employed in water treatment works.

Contd.....2

8

4

6 6

8

6

6

8

6

P13CV51 Page No... 2

b.	Define overflow rate and detention period for plain sedimentation tank.	6			
c.	A circular sedimentation tank fitted with standard mechanical sludge removal equipment is to				
	handle 3.5 million liters per day of water. If the detention period of the tank is 5 hours, and the	8			
	depth of the tank is 3 m, what should be the diameter of the tank?				
6 a.	What do you understand by plain sedimentation? Describe the design concepts in an up flow				
	clarifier for Type-I setting.	6			
b.	Why alum is commonly used coagulant? Write down the reactions.	6			
c.	Determine the quantity of filter alum and quick lime having 85% purity to treat 40 MLD of				
	water. The dosage of alum is $18 \text{ mg/}l$ and the natural alkalinity is $5 \text{ mg/}l$ as CaCO ₃ . (Molecular	8			
	weight of alum = 666, $Ca = 40$, $C = 12$, $H = 1$ and $O = 16$).				
	UNIT - IV				
7 a.	Explain the mechanism of filtration.	6			
b.	Explain with a neat sketch the working and cleaning of a rapid sand filter.	6			
c.	Design two rapid sand filter beds from the following data:				
	Population to be served = 50000 per capita demand = 180 lpcd,				
	Rate of filtration = 5000 litres/hr/sqm.	8			
	Length of each bed $= 1.5$ times the width				
	Max demand per day $= 1.8$ times the average daily demand.				
8 a.	What do you understand by chlorination? Explain the disinfection action of chlorine with	6			
	chemical reactions.	6			
b.	b. Chlorine usage in the treatment of 20000 m³/day is 8 kg/day. The residual chlorine after 10 min				
	contact is 0.20 mg/l. Calculate the dosage in milligrams/litre and chlorine demand of the water.				
c.	Explain break print chlorination and super chlorination.	8			
	UNIT - V				
9 a.	What is softening of water? Discuss the lime soda process of softening with chemical	8			
	equations involved in the process.	0			
b.	What are the advantages and disadvantages of zeolite process?	6			
c.	What do you understand by defluoridation of water? Describe Nalgonda technique of	6			
	defluoridation of water.	6			
10 a.	What are the functions of distribution reservoirs?	6			
b.	List the various layouts of water distribution network. Explain any two methods.	6			
c.	Explain with sketches sluice valve and air valve. Indicate their locations in water transmission	8			
	and distribution system.	O			