P.E.S. College of Engineering, Mandy - 571401

(An Autonomous Institution affiliated to VTU, Belgaum)
First Semester, B.E. - Semester End Examination; Dec - 2016/ Jan - 2017
Electronic Devices and Communication
(Common to all Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Calculate load Voltage $\left(\mathrm{V}_{\mathrm{L}}\right)$ and load current $\left(\mathrm{I}_{\mathrm{L}}\right)$ for the series diode configuration shown in Fig. Q1(b). Also plot the d.c. load line and mark the Q-point on it.

$$
\begin{equation*}
E=10 \mathrm{~V} \frac{ \pm}{-[} \quad-V_{D}=0.7 \mathrm{~V}, R_{L}=0.5 \mathrm{k} \Omega \tag{5}
\end{equation*}
$$ and related waveforms.

c. Calculate the following for the network shown in Fig. Q1(c) :
(i) Range of R_{L} and I_{L} that will result in V_{RL} being maintained at 10 V .
(ii) Determine the maximum wattage rating of the diode.
(iii) If zener maximum wattage is increased to 380 mW , what is the new value of $\mathrm{I}_{\mathrm{L} \text { min }}$?

Figure \& 1(c)

2 a. Write short notes on the following :
i) Photodiodes
ii) Solar cells.
b. Explain the principle of LCD (Liquid Crystal Display).
c. Calculate $V_{0}, V_{1}, I_{D 1}$ and $I_{D 2}$ for the parallel diode configuration shown in Fig. Q2(b)

Figure Q $2(b)$.
UNIT - II
3 a. Describe the basic operation and characteristics of n-channel depletion type MOSFET.
b. Explain the use of the complementary arrangement of CMOS inverter with figure.
c. Sketch the transfer characteristics for an n-channel enhancement-type MOSFET from the drain characteristics.

4 a. Define Barkhausen criterion for oscillation. Explain the feedback circuit that is used as an oscillator.
b. Sketch the E-MOSFET voltage divider configuration and its AC equivalent network.
c. Write circuit of FET phase shift oscillation and explain its working.

UNIT - III

5 a. Derive equation for output voltage of an Op-Amp circuits,
i) Inverting Amplifier
ii) Summing Amplifier
iii) Differentiator Circuit.
b. Define the Op-Amp frequency parameters :
i) Gain Bandwidth
ii) Slew rate (SR)
iii) Maximum signal frequency.
c. Calculate the output voltage of an Op-Amp for input voltages of $\mathrm{Vi}_{1}=150 \mu \mathrm{~V}$ and $\mathrm{Vi}_{2}=140 \mu \mathrm{~V}$. The amplifier has a differential gain of $\mathrm{A}_{\mathrm{d}}=4000$ and the value of CMRR is,
i) 100
ii) 10^{5}.

6 a. Show the connection of three Op-Amp stages to provide outputs that are $-10,-20$ and -50 times larger than the input. Use a feedback resistor $\mathrm{R}_{\mathrm{f}}=500 \mathrm{k} \Omega$ in all stages.
b. Explain the use of active low pass and high pass filter with circuit and ideal response of filters.
c. Calculate the output voltage of an Op-Amp inverting amplifier with a sinusoidal input of $2.5 \mathrm{mV}, \mathrm{R}_{\mathrm{f}}=200 \mathrm{k} \Omega$ and $\mathrm{R}_{1}=2 \mathrm{k} \Omega$.

UNIT - IV

7 a. Write the block diagram of a microcontroller and explain each block.
b. Compute:
i) $1101.1011_{(2)}=$ \qquad (10) $=$ \qquad (16)
ii) $3 \mathrm{E} \cdot 4 \mathrm{FC}_{(16)}=$ \qquad (10) $=$ \qquad
P13EC15
iii) Perform Binary addition 95
$+189$
iv) Perform Binary subtraction
189
-95
8 a. Write PSW (Program Status Word) of 8051 and explain use of each bit in it. 8
b. Explain internal RAM organization of 8051 microcontroller with figure. 12
UNIT - V
9 a. Define the following terms in wireless communication :
i) Base stationii) Mobile stationiii) Simple and Duplex communication.
b. Describe the call handling procedure from mobile to wire line with block diagram. 10
c. Explain handoff procedure in mobile communication. 4
10 a. Describe the Infrastructure and Ad-hoc network topology with diagrams. 10
b. Explain the GSM architecture with block diagram. 10

