U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, B.E. - Semester End Examination; Dec - 2016/ Jan - 2017 Electronic Devices and Communication

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Calculate load Voltage (V_L) and load current (I_L) for the series diode configuration shown in Fig. Q1(b). Also plot the d.c. load line and mark the Q-point on it.

- b. Explain the working of Center-Tapped transformer full wave rectifier with the help of circuit and related waveforms.
- c. Calculate the following for the network shown in Fig. Q1(c):
 - (i) Range of R_L and I_L that will result in V_{RL} being maintained at 10 V.
 - (ii) Determine the maximum wattage rating of the diode.
 - (iii) If zener maximum wattage is increased to 380 mW, what is the new value of I_{L min}?

- 2 a. Write short notes on the following:
 - i) Photodiodes
- ii) Solar cells.
- b. Explain the principle of LCD (Liquid Crystal Display).
- c. Calculate V_0 , V_1 , I_{D1} and I_{D2} for the parallel diode configuration shown in Fig. Q2(b)

10

5

5

5

7

8

Contd....2

b. Compute:

UNIT - II

3 a.	Describe the basic operation and characteristics of <i>n</i> -channel depletion type MOSFET.		
b.	Explain the use of the complementary arrangement of CMOS inverter with figure.		
c.	Sketch the transfer characteristics for an <i>n</i> -channel enhancement-type MOSFET from the drain	4	
	characteristics.	4	
4 a.	Define Barkhausen criterion for oscillation. Explain the feedback circuit that is used as an		
	oscillator.	7	
b.	Sketch the E-MOSFET voltage divider configuration and its AC equivalent network.	6	
c.	Write circuit of FET phase shift oscillation and explain its working.	7	
	UNIT - III		
5 a.	Derive equation for output voltage of an Op-Amp circuits,	9	
	i) Inverting Amplifier ii) Summing Amplifier iii) Differentiator Circuit.		
b.	Define the Op-Amp frequency parameters :	6	
	i) Gain Bandwidth ii) Slew rate (SR) iii) Maximum signal frequency.	O	
c.	Calculate the output voltage of an Op-Amp for input voltages of $Vi_1 = 150~\mu V$ and		
	$Vi_2 = 140 \ \mu V$. The amplifier has a differential gain of $A_d = 4000$ and the value of CMRR is,	5	
	i) 100 ii) 10 ⁵ .		
5 a.	Show the connection of three Op-Amp stages to provide outputs that are -10, -20 and -50		
	times larger than the input. Use a feedback resistor $R_{\rm f} = 500~\text{k}\Omega$ in all stages.	6	
b.	Explain the use of active low pass and high pass filter with circuit and ideal response of filters.		
c.	Calculate the output voltage of an Op-Amp inverting amplifier with a sinusoidal input		
	2.5 mV, R_f = 200 k Ω and R_1 = 2 k Ω .	4	
	UNIT - IV		
7 a.	Write the block diagram of a microcontroller and explain each block.	10	

i) 1101.1011₍₂₎ = ______₍₁₀₎ = _____₍₁₀₎ = _____₍₂₎

10

PI3ECI5		Page No 3	
	iii) Perform Binary addition		
	95		
	<u>+189</u>		
	iv) Perform Binary subtraction		
	189		
	<u>-95</u>		
8 a.	Write PSW (Program Status Word) of 8051 and explain use of each bit in it.	8	
b.	Explain internal RAM organization of 8051 microcontroller with figure.	12	
	UNIT - V		
9 a.	Define the following terms in wireless communication:		
	i) Base station	6	
	ii) Mobile station	0	
	iii) Simple and Duplex communication.		
b.	Describe the call handling procedure from mobile to wire line with block dia	gram. 10	
c.	Explain handoff procedure in mobile communication.	4	
10 a.	Describe the Infrastructure and Ad-hoc network topology with diagrams.	10	
b.	Explain the GSM architecture with block diagram.	10	

* * *