

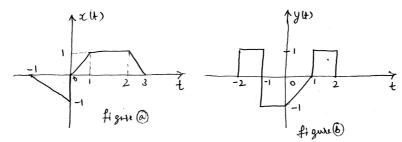
Time: 3 hrs

Max. Marks: 100

8

6

6


6

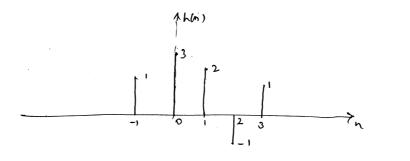
Page No... 1

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. Mention the classification of signals and explain each with example.
 - b. For the given signals x(t) and y(t) are shown in figure (a) and figure (b). Sketch the even and odd signals.

- c. Analyze whether the following signals are periodic or non-periodic. If periodic, find the fundamental period. i) $x(n) = \cos(\frac{n\pi}{7})\sin(\frac{n\pi}{3})$ ii) $x(n) = \cos n\pi \left[u(n+4) u(n-5)\right]$.
- 2 a. Show that the product of two even signal or two odd signals is an even signal, while the product of even and odd signal is an odd signal.
- b. Analyze the given system is stable, casual, linear, time invariant and memory less,


i)
$$y(t) = \frac{dx(t)}{dt}$$
 ii) $y(t) = x(2-t)$.

c. Find the energy or power, whichever is appropriate for the following signals,

i)
$$x(t) = tu(t)$$
 ii) $x(n) = (\frac{1}{3})^n u[n].$

UNIT - II

- 3 a. Compute the convolution of two sequences $x_1(n)$ and $x_2(n)$, where $x_1(n) = \{1, 2, 3\}$ and $x_2(n) = \{1, 2, 3, 4\}$.
- b. A discrete Time LTI system has Impulse response h(n) as shown in figure. Use linearity and time Invariant. Analyze the system output y(n), if the output y(n) is x(n) = u(n) u(n-3)

8

Contd....2

6

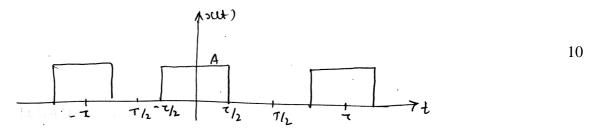
P13EC34

6

c. Develop the system output for the given input Impulse response,

$$y(n) = u(n) * u(n-3).$$

4 a. Design the LTI system output response for the given system difference equation :


$$y(n) - \frac{1}{9}y(n-2) = x(n-1)$$
 with $y(-1) = 1$, $y(-2) = 0$ and $x(n) = u(n)$.

b. Implement the system given below using Discrete form I and direct form II,

$$\frac{d^{3}y(t)}{dt^{3}} + 2\frac{dy(t)}{dt} + 3y(t) = x(t) + 3\frac{dx(t)}{dt}.$$
10

UNIT - III

5 a. Determine the Fourier series representation of the Waveform shown below,

b.	State and prove the properties of Fourier series;	10
	i) Convolution ii) Time shift.	10
6 a.	State and prove the convolution and modulation properties of Fourier transform.	10
b.	Find the Fourier transform of the following signals;	
	i) $x(t) = e^{-t-1}u(t)$ ii) $x(t) = e^{-t-j\pi t}u(t)$.	10
UNIT - IV		
7 a.	State and prove the convolution and Parseval's property of DTFT.	10
b.	Determine the DTFT of the following signals	
	i) $x(n) = u(n)$ ii) $x(n) = (-1)^n u(n)$ iii) $x(n) = u(n) - n(n-6)$	10
8 a.	State and prove sampling theorem. Define aliasing distortion.	10
b.	The transfer function of a system is,	
	$H(w) = \frac{16}{4+jw}$ Find the domain response $y(t)$ for the Input $x(t) = u(t)$.	10
UNIT - V		
9 a.	State and prove time shifting and convolution properties of Z-transform.	8
b.	Find the Z-transform of $x(n)$ and plot pole-zero location. Indicate ROC,	
	i) $x(n) = \sin \Omega_0 n - u(n)$ ii) $x(n) = nu(n)$.	8

P13EC34

c. Find the Inverse Z-transform of,

$$X(Z) = \frac{z(z^2 - 4z + 5)}{(z - 3)(z - 1)(z - 2)}$$
 for the following ROCs,
i) $2 < |z| < 3$
ii) $|z| > 3$

iii)
$$|z| < 1$$

10 a. Solve the difference equation using unilateral Z-transform,

$$y(n+2)+3y(n+1)+2y(n)=0$$
 with $y(0)=0$; $y(1)=1$.

b. A stable system described by difference equation,

$$y(n) - y(n-1) + \frac{1}{4}y(n-2) = x(n) + \frac{1}{4}x(n-1) - \frac{1}{8}x(n-2)$$

Determine;

i) Impulse response of the system

ii) If,
$$y(n) = (\frac{1}{4})^n u(n) + (-\frac{1}{2})^n u(n)$$
.

c. If
$$h(n) = (\frac{1}{3})^n u(n) + (\frac{1}{2})^{n-2} u(n-1)$$
,

Determine the transfer function and difference equation.

6

10

5