
P1	3EC53		Page No 1										
Carping St			U.S.N										
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Electronics and Communication Engineering Semester End Examination; Dec - 2016/Jan - 2017 Information Theory and Coding													
Ti	me: 3 hrs		Max. Marks: 100										
Na	,	ull questions, selecting ON Cany, may be suitably assum UNIT											
1 a.	Define: i) Self Information	ii) Mutual Information	iii) Conditional Entropy with an example.	6									

- b. State and derive source coding theorem.
 c. A discrete message source 'S' emits 2 independent symbols *x* and *y* with probabilities 0.55 and 0.45 respectively. Calculate efficiency of the source and its redundancy.
- 2 a. Discuss the various properties of entropy.
 - b. Explain JPEG standard for lossless compression.
 - c. Consider the state diagram of the Markov source of the figure.

i) Compute the state probabilities

ii) Find the entropy of each state

6

4

10

8

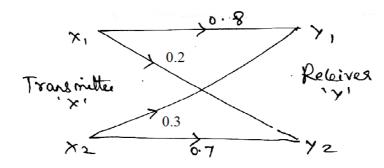
6

iii) Find the Entropy of the source.

UNIT - II

- 3 a. What is a binary symmetric channel? Determine the rate of information transmission over the channel.
 - b. Generate an expression for Shannon's source coding theorem.
 - c. A binary symmetric channel has the following noise matrix with source probabilities of,

$$P(X_{1}) = \frac{2}{3} \text{ and } P(X_{2}) = \frac{1}{3}$$


$$P(\frac{Y}{X}) = \frac{X_{1}}{X_{2}} \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$

$$Y_{1} \quad Y_{2}$$

$$Contd....2$$

i) Determine; H(X), H(Y), H(X,Y), H(Y,X), $H\begin{pmatrix}X/\\Y\end{pmatrix}$ and I(X,Y)

- ii) Find the channel capacity C
- iii) Find channel efficiency of redundancy.
- 4 a. Find the mutual information and the channel capacity of the channel shown in the figure. Given $P(X_1) = 0.6$ and $P(X_2) = 0.4$.

b. A message source produce two independent symbols A and B with probabilities P(A) = 0.3and P(B) = 0.7. Calculate the efficiency of the source and hence its redundancy. If symbols received in average with 5 in every 100 symbols are error, calculate the Transmission rate of a system.

UNIT - III

- 5 a. Explain with matrix Description of Linear Block Codes.
 - b. Define the following:

i) Black codes ii) Random	Error
---------------------------	-------

- iii) Hamming Weight iv) Convolution code.
- c. Consider a (6, 3) linear code whose generator matrix is,

	1	0	0	1	0	1	
<i>G</i> =	0	1	0	1	1	0	
	0	0	1	0	1	1	

- i) Find all code vectors
- ii) Find all the Hamming Weight and distances
- iii) Find minimum weight parity check matrix
- iv) Draw the encoder circuit for the above codes.
- 6 a. What is a field? List all the properties of fields.
 - b. What is error control coding? Give the basic idea of error correcting codes and the objectives of a good error control coding scheme.
 - c. Discuss the types of errors in error control schemes.

8

8

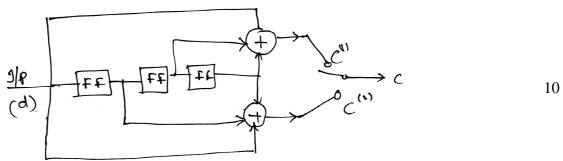
4

12

- 8

6

6


8

UNIT - IV

- 7 a. Explain the following:
 - i) Burst errors correction code ii) Shortened cyclic code 10 iii) Golay Code iv) Fire codes.
 - b. In a (7, 4) Binary cyclic the generator polynomial is given by $g(x) = 1 + x + x^3$. Find the code 10 word for the messages (1001) and (1011). Show the contents of registers at each step. Also point out corresponding Systematic and Non-systematic cyclic code word.
- 8 a. Consider a (15, 11) cyclic code generated by $g(x) = 1 + x + x^4$. Devise a feedback shift 10 register encodes circuits. Illustrate the encoding procedure with the message vector 0010110111 by listing the state of the registers.
 - b. Explain the properties of cyclic codes.

UNIT - V

9 a. Figure shows a (2, 1, 3) convolution encodes.

- i) Draw the state diagram ii) Draw a code tree.
- b. Explain encoding of convolutional codes using time domain approach with an example. 10

10 a. What do you understand by trellis diagram of a convolutional encoder? Explain clearly.

- b. Consider the (3, 1, 2) convolutional code with $g^{(1)} = (110)$, $g^{(2)} = (101)$ and $g^{(3)} = (111)$
 - i) Draw the encoder block diagram
 - ii) Find the generator matrix
 - iii) Find the code-word corresponding to the information sequence (1 1 1 0 1) using time domain Transform domain approach.

10

10

10