P13EC54 Page No... 1 U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec - 2016/Jan - 2017 **Digital Communication Theory** Time: 3 hrs Max. Marks: 100 *Note*: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I 1 a. Define the following terms related to random process : 6 i) Mean ii) Correlation iii) Covariance Function. b. A Random variable has a probability density function, $f_{x}(x) = \begin{cases} \frac{5}{4}(1-x^{4}) & 0 \le x \le 1\\ 0 & elsewhere \end{cases}$ Find; 6 *i*) E[X] *ii*) E[4X+2] *iii*) $E[X^2]$. c. What is Gaussian process? Mention the properties of Gaussian process. 8 2 a. Define and mention the properties of power spectral density. 10 b. Let two random process X(t) and Y(t) be defined by; $Y(t) = B\cos\omega_0 t - A\sin\omega_0 t$. $X(t) = A\cos\omega_0 t + B\sin\omega_0 t$ 10 Where, A & B are random variables assumed to have zero mean and are uncorrelated but A & B are assumed to have variances σ^2 . Find the cross-correlation function $R_{xy}(\tau)$. UNIT - II 3 a. Explain the generation and re-construction of band-pass signal g(t). 10 b. Determine the Nyquist rate and the Nyquist sampling interval for the following signals and

i)
$$g_1(t) = \operatorname{Sin} c(100\pi t)$$
 ii) $g_2(t) = \operatorname{Sin} c^2(100\pi t)$ 10

iii)
$$g_3(t) = \operatorname{Sin} c(100\pi t) + S \operatorname{in} c(50\pi t).$$

also plot the spectrum,

- 4 a. Discuss the concept of practical sample and hold circuit along with block diagram and spectrum of the output signals.
 - b. A signal $g(t) = 10\cos(20\pi t)\cos(200\pi t)$ is sampled at the rate of 250 samples/second,

i) Sketch the spectrum of the sampled signal

- ii) Specify the cutoff ideal reconstruction filter, so as to recover g(t) from $g_{\delta}(t)$
- iii) Specify the Nyquist rate for the signal g(t).

Contd.....2

10

scheme.

UNIT - III

5 a.	Distinguish the characteristics of midtread and midriser quantizer along with variation of	10
	quantization error with input.	
b.	Explain the processing gain of DPCM system.	4
c.	For a binary PCM signal, determine 'L', if the compression parameter $\mu = 100$ and	6
	minimum $[SNR]_0$, dB = 45 dB. Determine the $[SNR]_0$ in dB with this value of L.	0
6 a.	A PCM system uses a uniform quantizer followed by a 7-bit encoder. The bit rate of the	
	system is 50 M bits/sec.	
	(i) What is the message bandwidth for which the system operates satisfactorily?	10
	(ii) Determine the output signal-to-quantizing noise ratio when a sinusoidal modulating	
	wave of frequency 1 MHz is applied to the input.	
b.	With a neat block diagram, explain adaptive sub-band coding scheme in Transmitter and	10
	receiver.	10
UNIT - IV		
7 a.	Sketch the encoded waveform for the bit stream 011011 for the following schemes,	
	i) RZ Uni-Polar ii) NRZ Uni-Polar iii) NRZ polar	10
	iv) Biphase v) NRZ bipolar.	
b.	Explain adaptive equalizing filter for base band data transmission.	10
8 a.	A multi-level digital communication system transmits one of the 16 possible levels over	
	the channel every 0.8 ms.	6
	i) What is the minimum number of bits corresponding to each level?	6
	ii) What is the baud rate? iii) What is the bit rate?	
b.	Show that power spectra of discrete PAM signal is $S_x(f) = a^2 T_b \sin c^2 (fT_b)$.	10
c.	Sketch and explain ISI.	4
UNIT - V		
9 a.	Derive probability of error for a coherent FSK system.	10
b.	With transmitter and receiver block diagram, explain coherent QPSK system.	10
10a.	A binary data is transmitted using ASK over an AWGN channel at a rate 24 MBPS. The	
	carrier amplitude at the receiver is 1 mV. Noise power spectral density, $\frac{N_o}{2} = 10^{-15} w / Hz$.	8
	Find the average probability of error, if the detection is (i) Coherent (ii) Non-coherent.	
b.	With necessary waveforms and block diagrams, explain continuous phase modulation	10
	scheme.	12

* * *