U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Fifth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec - 2016/ Jan - 2017 Digital CMOS VLSI Design

	Digital CMOS VLSI Design	
Ti	ime: 3 hrs Max. Marks: 100	
No	ote: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Missing data, if any, may be suitably assumed. UNIT - I	
1 a.	Calculate the threshold voltage V_{TO} for $V_{SB}=0$, given substrate loping $10^{15}/cc$, poly	
	silicon gate doping density $10^{20} / cc$, gate oxide thickness $650 \stackrel{\circ}{A}$, $N_{ox} = 2 \times 10^{10} / cm^2$	12
	$\varepsilon_{Si} = 11.7\varepsilon_0, \ \varepsilon_{ox} = 3.97\varepsilon_0.$	
b.	Analyze the input of second order effects with respect to;	8
	(i) Substrate bias effect (ii) Channel length modulator.	0
2 a.	Draw the layout of resistive load inverter with diffused resistor and undoped poly silicon resistor.	4
b.	Analyze the VTC of 3 CMOS invertors with different $\frac{\beta n}{\beta P}$.	4
c.	Calculate the noise margins of CMOS inverter. Given $V_{DD} = 3.3V$, $V_{TO,n} = 0.6$,	10
	$V_{TP} = -0.7V$, $K_n = 200\mu A/V^2$, $K_p = 80\mu A/V^2$.	12
	UNIT - II	
3 a.	Derive an expression for τ_{PLH} and τ_{PLH} of CMOS inverter considering;	10
	(i) $V_{50\%}$ (ii) $V_{10\%}$ (iii) $V_{90\%}$ along with I/o w/f.	
b.	Briefly analyze the influence of fringing electric fields upon the parasitic wire capacitance.	4
c.	Along with voltage and current waveform, obtain an expression for average power in	6
	CMOS inverter.	Ü
4 a.	Analyse the impact of interconnect delay over gate delay in sub-micron CMOS technology.	6
b.	Obtain an expression for delay by considering Elmore delay concept in a general RC tree network.	8
c.	With a typical voltages waveform, obtain an expression for oscillation frequency in a	6

3-stage ring oscillator.

P13EC55 Page No... 2

UNIT - III

5 a.	Obtain an expression for switching threshold voltage of CMOS NOR ₂ Gate.	6
b.	Realize the function $F = AB\overline{C} + \overline{A}B + A\overline{C}$ using CMOS TG (transmission gates).	4
c.	Obtain the Euler path and draw the optimized stick diagram for the function,	10
	$F = \overline{A(D+E) + BC}.$	10
6 a.	Along with CMOS schematic and waveform, explain the working of NOR based clocked	0
	SR latch.	8
b.	Along with gate level schematic, nMOS schematic and waveform explain the working of	0
	NAND based SR latch.	8
c.	Realize the schematic of CMOS D latch version 1.	4
	UNIT - IV	
7 a.	Discuss the charge storage and charge leakage phenomenon at a soft node in a CMOS n/w.	8
b.	Analyze the working of high performance of DOMINO CMOS logic. In what way it is	10
	better than Dynamic CMOS logic? Explain.	12
8 a.	Explain the voltage boot strapping principle. Hence derive an expression for C_{boot}/C_S .	8
b.	Analyze the performance of NORA CMOS logic and obtain pipelined architecture using	12
	NORA CMOS logic.	12
	UNIT - V	
9 a.	Derive an expression for I_{C} in forward Active mode, using Ebers-moll equivalent circuit.	10
b.	Realize the schematic of BiCMOS, NAND3 gate.	4
c.	Discuss the H-tree and Buffered clock distribution n/w.	6
10 a.	Analyze the response of delay V/s C_L for CMOS and BiCMOS technology.	5
b.	Discus briefly $L(\frac{di}{dt})$ noise effect in output circuits.	6
c.	Analyze the performance of 3 clock generation n/ws.	9