U.S.N					

inverter.

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Seventh Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec - 2016/Jan - 2017 Low Power VLSI Design

Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. **UNIT-I** 1 a. Briefly analyze the parameters which are to be considered while designing for low power. 8 Analyze the impact of sub threshold current and the sub threshold swing in long channel 6 MOSFET. Explain the three basic principles that have fundamental limits on low power design. 6 2 a. Analyze the body effect along with mathematical relation in long-channel MOSFET. 6 Explain the charge sharing phenomenon in dynamic circuits. 6 Explain the parameters which have impact on circuit limits while designing for low power 8 circuits. UNIT - II Obtain the signal flow graph for direct and transpoled direct form of FIR system. 8 3 a. b. Analyze the power optimization using operation reduction maintaining throughout. 4 Discuss the technology mapping by considering area and power. 8 c. 4 a. Obtain the data flow graph of IIR filter. 4 b. Analyze the parallel and pipelined implementation along with diagram and expression. 8 Obtain the algorithm for power dissipation driven multilevel logic optimization. 8 c. **UNIT - III** Analyze the power consumption in a CMOS circuit defined by $y = \overline{(x_1 + x_2)x_3}$. 5 a. 4 8 Obtain the leakage summary in deep sub micrometer transistors. b. Compare the performance of single gate and dual gate SOI MOSFET along with schematic. 8 c. Analyze the performance of general structure of DCVS logic. 6 6 a. b. Draw the schematic of short channel transistor, showing the various components of leakage 8 currents. Discuss the surface potentials of short and long channel division. 6 **UNIT-IV** 7 a. With graphical approach, analyze the principles of sub threshold reduction. 6 Compare the performance of conventional CMOS dynamic inverter with that of ADL CMOS

6

P1	3EC72							
c.	Obtain the clock waveforms along with the interconnected 4 ADL inverters							
8 a.	a. Realize the schematic of 2 input NAND gate using MTCMOS concept and inverter us							
	DTMOS concept.	10						
b.	Analyze the performance of 2N-2N2D inverters/buffer schematic.	6						
c.	Obtain the schematic of 2 inputs ADL NAND gate.	4						
UNIT - V								
9 a.	Briefly analyze the services of software power dissipation.	12						
b.	Discuss the access graph for code fragment and hence analyze partitioned access graph.	8						
10 a.	Briefly explain the algorithm transformation to match computational resources.	10						
b.	Discuss with necessary arrangements, the sample memory and register allocation constraints.	10						