P13EE53 <i>Page N</i>		
	U.S.N	
T	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Fifth Semester, B.E Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 Digital Signal Processing ime: 3 hrs Max. Marks: 100	
Ne	ote: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Assume missing data if any. UNIT - I	
1 a.	Derive the relationship between N-point DFT and Z-transform.	6
b.		
	which both the sequence and transform can be reconstructed.	10
c.	Obtain N-point of,	4
	i) $x(n) = \delta(n)$ ii) $x(n) = u(n) - u(n - n_0)$.	4
2 a.	Given $x(n) = \begin{bmatrix} 1 & 1 \end{bmatrix}$ obtain the five point DFT, X(K). Use linear transformations.	8
b.	Obtain IDFT of $X(K) = \{10, (-2+2j), -2, (-2-2j)\}$ using DFT for,	0
	i) $N = 4$ ii) $N = 8$. Compare the results.	8
c.	Explain the need of twidle factors in the calculation of computing DFT and IDFT.	4
	UNIT - II	
3 a.	Determine N-point circular convolution of $x_1(n)$ and $x_2(n)$,	
	$x_1(n) = \cos\left(\frac{2\pi n}{N}\right)$ and $x_2(n) = \sin\left(\frac{2\pi n}{N}\right)$.	6
b.	State and prove the following properties of DFT,	
	i) Time reversal of a sequence property	9
	ii) Circular frequency shift property	7
	iii) Complex conjugate property.	
c.	If $x(n)$ is an even length sequence with N-point DFT, $X(K)$, then determine the N-point DFT of	~
	$y(n) = x(n) - x\left(n - \frac{N}{2}\right).$	5
4 a.	State and prove Perversal's theorem.	5
b.	The even samples of 11-point DFT of length 11 real sequences are given by,	
	X(0) = 2, X(2) = -1 - j3, X(4) = 1 + j4	8
	$X(6) = 9+j3, \ X(8) = 5, \ X(10) = 2+j2$	0
	Determine the missing odd samples.	
c.	Explain symmetric properties of DFT.	7

P13EE53

UNIT - III

5 a.	What is FFT? Why FFT is needed?	4	
b.	Compare computational complexity for direct DFT and Radix FFT for,		
	i) N = 64	6	
	ii) $N = 512$. What are the speed improvement factors in each case?		
c.	Derive Radix-2, DIT-FFT algorithm to compute DFT of $N = 8$ -point sequence and draw	10	
	complete signal flow graph.	10	
6 a.	Find the IDFT of sequence $X(K) = \{4, 1-j2.414, 0, 1-j0.414, 0, 1+j0.414, 0, 1+j2.414\}$ using	10	
	DIF Algorithm.	10	
b.	Obtain DFT of sequence $x(n) = \{1 \ 2 \ 3 \ 4 \ 4 \ 3 \ 2 \ 1\}$ using DIT Algorithm.	10	
UNIT - IV			
7 a.	Determine the co-efficient K_m of Lattice FIR filter whose transfer function described by,		
	$H(z) = 1 + 2z^{-1} + \frac{1}{3}z^{-2}$. Also draw corresponding lattice structure.	10	
b.	Realize the FIR filter whose transfer function is $H(z) = 1 + \frac{3}{4}z^{-1} + \frac{17}{8}z^{-2} + \frac{3}{4}z^{-3} + z^{-4}$ in		
		10	
	i) Direct form ii) Cascade form.		
8 a.	Obtain direct form, cascade and parallel Realization of transfer function,		
	$(3+5z^{-1})(0.6+3z^{-1})$	10	
	$H(z) = \frac{(3+5z^{-1})(0.6+3z^{-1})}{(1-2z^{-1}+z^{2})(1-z^{-1})}$		
b.	Convert the following pole zero IIR filter into lattice structure,		
	$1+2z^{-1}+2z^{-2}+z^{-3}$	10	
	$H(z) = \frac{1 + 2z^{-1} + 2z^{-2} + z^{-3}}{1 + \frac{13}{14}z^{-1} + \frac{5}{8}z^{-2} + \frac{1}{3}z^{-3}}$	10	
UNIT - V			
9 a.	Derive expression for calculating poles of a Butterworth LPF.	6	
b.	Compare Butterworth and Chebyshev filters.	4	
c.	Explain:		
	i) Bilinear Transformation	10	
	ii) Impulse invariant Technique or method for Digital filter Design.		
10 a.	List the steps in the design procedure of a FIR filter using window functions.	10	
b.	Design a filter $H_d(e^{j\omega}) = \begin{cases} e^{-j3\omega}; -\frac{\pi}{4} \le \omega \le \frac{\pi}{4} \\ 0; \frac{\pi}{4} < \omega \le \pi \end{cases}$. Using hamming window with N = 7.	10	
	$[0; \frac{\pi}{4} < \omega \le \pi]$	-	