U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Seventh Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 High Voltage Engineering

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a	. List out the applications of high voltage.	5			
	b. Explain primary and secondary ionization processes in gaseous dielectrics.				
	c. What is a non uniform field? Discuss breakdown in non uniform field.				
2 a	2 a. Explain streamer theory of breakdown in gases.				
	b. Explain the thermal breakdown in solid dielectric.				
	Explain cavity breakdown in liquid dielectric field.	5 5			
UNIT - II					
3 a.	What is the need for cascading of transformers?	5			
b.	Explain the working of Tesla Coil.	7			
c.	Explain the Cockcroft-Walton type high voltage DC set.	8			
4 a.	Explain a series resonant circuit.	7			
b.	b. Explain voltage doubler circuit.				
c.	Define rippler regulation and optimum number of stages.	6			
UNIT - III					
5 a.	Define standard lighting and switching impulse voltage. Draw the waveforms.	6			
b.	Explain multi stage Marx impulse generator.	8			
c.	An impulse generator has 8 stages with each capacitor rated for 0.16 μF , 125 kV. The load				
	capacitor is 1000 pF. Find series resistance and damping resistance to produce 1.2/50 impulse	6			
	wave.				
6 a.	How do you generate switching surges? Explain.	7			
b.	Explain working of a trigatron gap.	7			
c.	An impulse current generator has a total capacitance of 8 μF . The charging voltage is 25 kV.				
	If generator has to supply an output current of 10 kA with 8/20 µs waveform, determine;				
	i) Circuit inductance	6			
	ii) Dynamic resistance of circuit.				

UNIT - IV

7 a.	7 a. Explain with a neat diagram the working of electrostatic voltmeter. Mention its limitations.					
b.	b. Explain working of Resistance divider. What are its limitations?					
c.	c. Write a note on Klydano graph.					
8 a.	8 a. Explain standard sphere gap measurements for impulse voltage. Discuss on limitations of such a					
	method.					
b.	Explain the working of capacitance divider.	6				
c.	c. Write a note on generating voltmeter.					
UNIT - V						
9 a.	. What is dielectric loss? Explain.	4				
b.	Explain high voltage schering bridge.	8				
c.	Explain tests on circuit breaker.	8				
10 a	. What is the need for discharge detection? Explain.	4				
b.	Explain straight detection method of discharge detection.	8				
c.	Explain tests on Insulators.	8				