

- i) Motoring operation at rated motor torque and 1000 rpm
- ii) Braking operation at rated motor torque and 100 rpm.

Contd.....2

c.	A 230 V, 960 rpm, 200 A separately excited DC motor has an armature resistance of 0.02 Ω .	
	The motor is fed from a chopper which provides both motoring and braking operation. For a	
	source voltage of 230 V, assuming continuous conduction, calculate;	6
	i) Duty ratio of chopper for motoring operation at rated torque and 350 rpm	
	ii) Calculate duty ratio of chopper for braking operation at rated torque and 350 rpm.	
	UNIT - III	
5 a.	Derive an expression for closed loop control of separately exited DC motor for change in voltage.	10
b.	Explain the phase locked loop control of a DC motor.	10
6 a.	Derive an expression for closed loop control of a separately excited DC motor for change in	10
	load torque.	10
b.	With the help of block diagram, explain the closed loop control scheme for a DC drive using micro computer.	10
	UNIT - IV	
7 a.	With a neat circuit diagram and waveforms, explain the operation of a voltage source inverter	10
	(VSI) fed Induction motor drive.	10
b.	A 3-phase 1370 rpm, 400 V, 2.8 kW, 4-pole, Y-connected squirrel cage induction motor has	
	$R_s = 2 \Omega$, $R_r' = 3 \Omega$, $X_s = X_r' = 3.5 \Omega$. The motor is controlled by a voltage source inverter at	
	constant V/f ratio. Inverter allows frequency variation from 10 to 50 Hz. Calculate starting	10
	torque and current of this drive as a ratio of their values when motor is started at rated voltage	
	and frequency.	
8 a.	With a neat block diagram, explain closed loop speed control operation for induction motor	10
	drive using either CSI or VSI.	10
b.	With necessary circuit and speed torque curve, explain the operation of static scherbius drive	10
	system.	10
	UNIT - V	
9 a.	Explain variable frequency control scheme for both true synchronous and self synchronous	10
	mode of operation for synchronous motor drive.	10
b.	With a neat circuit diagram, explain the operation of self-controlled synchronous motor drive	10
	employing load commutated Inveter.	10
10 a.	With the help of single line diagram, explain the operation of cement mill and the drives used	10
	in operation.	
b.	Explain the different stages involved in production of cloth in a textile industry. Clearly	

b. Explain the different stages involved in production of cloth in a textile industry. Clearly mention the ratings and types of electric drive used in each stage.

P13EE73

b. With relevant circuit diagram and waveworms, explain the motoring and regenerative braking

of chopper controlled separately excited DC motor.