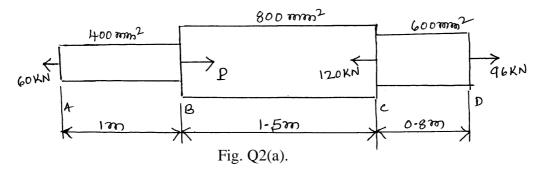
PU.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Industrial and Production Engineering Semester End Examination; Dec - 2016/Jan - 2017 Mechanics of Materials

Time: 3 hrs Max. Marks: 100


Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. The tensile test was conducted on a mild steel bar. The following data was obtained from the test.

Diameter of steel bar = 16 mm, Gauge length of the bar = 80 mm, Load at proportionality limit = 72 kN, Extension at a load of 60 kN = 0.115 mm, Load at failure = 80 kN. Final gauge lengths of bar = 104 mm. Diameter of the rod at failure = 12 mm. Determine;

- i) Young's modulus
- ii) Proportionality limit
- iii) True breaking stress
- iv) Percentage elongation.
- b. Derive the equation for total extension of a tapering bar of circular cross section.
- 2 a. A settle bar ABCD of varying sections is subjected to the axial forces as shown in Fig. Q2(a). Find the value of 'P' necessary for equilibrium. If $E = 210 \text{ kN/mm}^2$. Determine;
 - i) Stress in various segments
- ii) Total elongation of the bar
- iii) Total strain in the bar.

b. Determine the changes in length, width and thickness of a steel bar which is 4 meters long, 30 mm wide and 20 mm thick and is subjected to an axial pull of 30 kN in the direction of length. $E = 2x10^5 \text{ N/mm}^2$ and Poisson's ratio = 0.3. Also determine the volumetric strain, change in volume and final volume of the given bar.

UNIT - II

3 a. A steel tube of 25 mm external diameter and 18 mm internal diameter encloses a copper rod of 15 mm diameter. The ends are rigidly fastened to each other. Calculate the stress in the rod and the tube when the temperature is raised from 15°C to 200°C.

Take $\alpha_{steel} = 11 \times 10^{\text{-6}} \text{/°C}$, $\alpha_{copper} = 18 \times 10^{\text{-6}} \text{/°C}$, $E_{steel} = 200$ GPa and $E_{copper} = 100$ GPa.

12

8

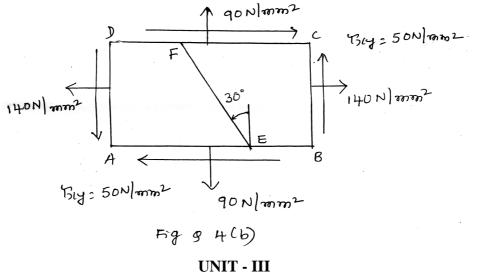
12

8

12

P13IP34 Page No... 2

b. A point in a strained material is subjected to a tensile stress of 500 N/mm² and 300 N/mm² in two mutual perpendicular planes. Calculate the normal, tangential, resultant stresses and its obliquity on a plane making an angle of 30° with the axis of the second stress, also find the maximum shear stress.


8

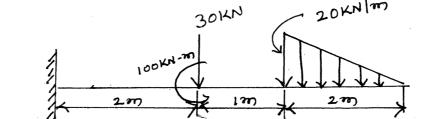
4 a. Derive an equation for normal stress on a plane inclined at an angle θ is subjected to two perpendicular normal stresses accompanied with a state of simple shear.

8

12

A point in a strained material is subjected to stress as shown in Fig. Q 4(b). Find using Mohr's circle method the normal, tangential and resultant stress across the plane EF. Also determine the maximum, minimum principal stresses, its locations.

12


A thick cylindrical pipe of outside diameter 300 mm and internal diameter 200 mm is 5 a. subjected to an internal fluid pressure of 20 N/mm² and external fluid pressure of 5 N/mm². Determine the maximum hoop stress developed. Draw the variation of hoop stress and radial stress across the thickness indicating the values at every 25 mm interval.

8

6 a. Draw the shear force and bending moment diagram for the beam shown in Fig. Q 6(a) locate

With neat sketches, explain different types of beams, supports and loads.

the point of contra flexure if any.

12

9 69)

b. Derive the relationship between load, shear force and bending moment.

8

UNIT - IV

7 a.	Compare the flexure strength of the following three beams of equal weight.						
	Same material and same lengths.						
	i) I-section 200 mm x 300 mm having 10 mm flange thickness and 10 mm web thickness	12					
	ii) Rectangular section having depth equal to twice the width						
	iii) Solid circular section.						
b.	A cast Iron bracket of I-section with equal flanges of 100 mm x 200 mm having 10 mm						
	thickness and 5 mm web thickness carries as UDL of 10 kN/m. On a span of 10						
	meters length determine the position of neutral axis, MI about the neutral axis and the	8					
	maximum stress distribution.						
8 a.	Draw the shear stress distribution for;	8					
	i) I-section ii) T-section.	0					
b.	A beam of 'T' section has flanges 100 mm x 20mm and web 200 mm x 12 mm is subjected						
	to a vertical shear force of 200 kN. Find the shear stress at the flange, junction, and neutral	12					
	axis. Also sketch the stress distribution diagram.						
	UNIT - V						
9 a.	A cantilever beam of 2 meters long is carrying a load of 20 kN at its free end and 30 kN at						
	a distance of 1 meter from the free end. Find the slope and deflection at the free end take	12					
	$I = 15x10^7 \text{ mm}^4$. $E = 2x10^5 \text{ N/mm}^2$.						
b.	Derive an equation for maximum deflection of a simply supported beam with 9 point load at	8					
	center.	O					
10 a.	A solid shaft is subjected to a maximum torque of 25 kN-m. Find a suitable diameter of a						
	solid shaft. If the allowable shear stress and the twist are limited to 80 N/mm ² and 1°	8					
	respectively for a length of 20 times the diameter of the shaft.						
b.	What are columns and types of columns? Explain.	4					
c.	Explain the following:						
	i) Slenderness ratio	8					
	ii) Radius of gyration	J					