U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Mechanical Engineering Semester End Examination; Dec - 2016/Jan - 2017 Basic Thermodynamics

		Basic Thermodynamics	
	Ti	me: 3 hrs Max. Marks: 100	
	No	te: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Use of Thermodynamics data hand book is allowed.	
		UNIT - I	
1	a.	Define the following terms:	
		(i) Control volume (ii) Quasistatic process	8
		(iii) Zeroth law of thermodynamics (iv) Reversible process.	
	b.	What is an adiabatic process? Derive an expression for work done in an adiabatic process.	8
	c.	Explain microscopic and microscopic point of views in the study of thermodynamics.	4
2	2 a.	Give the thermodynamic definition of work and heat.	4
	b.	Explain with a neat sketch an example to indicate the difference between heat and work flow.	6
	c.	Work supplied to a closed system is 160 kJ. The initial volume is $V_1 = 0.8 \text{ m}^3$ and the	
		pressure of the system varies $P = 7 - 3v$, where P is in Bar and v is in m^3 . Determine the final	10
		volume and pressure of the system.	
		UNIT - II	
3	8 a.	Define first law of thermodynamics. Show that for a closed system undergoing a cyclic	
		process, $\Delta Q = (E_2 - E_1) + \Delta W$.	6
	b.	Define enthalpy and show that enthalpy $H = U + PV$.	6
	c.	An engine has a volume of 60 litres and a compression ratio of 14.2 to one. At the beginning	
		of compressions stroke, the pressure and temperature are 1 Bar and 80°C. At the end of	
		compression process the pressure is 30 Bar. The charge is now heated at constant pressure	8
		until the volume is doubled. Determine, index of compression, temperature at the end of	
		compression, and work done.	
4	l a.	What is steady flow process and what are the conditions to be satisfied by a steady flow	6
		process? Given an example.	U
	b.	Define specific heats, and show that $R = C_P - C_V$.	6
	c.	12 kg of air/ minute is delivered by a centrifugal air compressor. Air enters at 12 m/s and the	
		compressed air leaves at 90 m/s. The increase in enthalpy of air passing through the	8
		compressor is 150 kJ/kg. Find the power required to drive the compressor. Also determine the	o

ratio of inlet to outlet diameter, assuming that both pipes are at the same level.

Contd....2

P13ME35 Page No... 2

UNIT - III

5 a.	Define the following terms :						
	(i) Dryness fractions	(ii) Two property rule	8				
	(iii) Sub cooled liquid	(iv) Triple point of water.					
b.	With a neat sketch, explain temperature-volume diagram and name the salient points (water).						
c.	A throttling calorimeter is used to measure the dryness fraction of the steam in the steam						
	main when the steam is flowing at a pressure of 6 Bar. The steam after passing through the						
	calorimeter comes at out of 100 kF	a pressure and 120°C temperature. Calculate the dryness	6				
	fraction of steam in the main.						
6 a.	With the help of neat sketch, explain the working of a combined separating and throttling calorimeter.						
b.	Sketch the temperature-enthalpy dia	gram for water and name the salient points.	4				
c.	Steam at 10 Bar and 0.95 dryness is	available. Determine the final condition of steam in each					
	of the following cases:						
	(i) 160 kJ of heat is removed at cons	tant pressure	8				
	(ii) It is cooled at constant volume to	(ii) It is cooled at constant volume till the temperature inside falls to 140°C.					
	(iii) Steam expands isentropically i	n a steam turbine developing 300 kJ of waste per kg of					
	steam when the exit pressure of the	steam is 0.5 bar.					
		UNIT - IV					
7 a.	Define two statements of second lav	of thermodynamics and comment on them.	6				
b.	Show that all reversible engines ha	ve the same efficiency when working between the same	6				
	two reservoirs.		U				
c.	There are three reservoirs at temper	rature 827°C, 127°C and 27°C in parallel. Reversible heat					
	engine operates between 827°C an	d 127 °C and a reversible refrigerator operates between					
	127°C and 27°C respectively. 500 kJ of heat is extracted from the reservoir at 827 °C by the						
	heat engine and 250 kJ of heat is	abstracted by the refrigerator from the reservoir at 27°C.	8				
	Find the net amount of heat delive	red to the reservoir at 127°C. Sketch the arrangement of					
	reservoirs.						
8 a.	Define heat engine and heat pump	or refrigerator. Write an expression for the efficiency of	6				
	heat engine and heat pump.						
b.	What is a perpetual motion machine	of second kind? Explain with neat sketch the working of	6				
	PPM-II kind.						
c.	Two Carnot engines work in series in between the source and sink temperature of 550°K and						
	350°K. If both engines develop equal power determine the intermediate temperature.						

UNIT - V

9 a.	Define entropy and show that entropy is a property of the system.	6		
b.	Show that $T.ds = dU + Pdv$ starting from first law of thermodynamics and hence derive an	6		
	expression for change in entropy.	6		
c.	Calculate the change in entropy of one kg of air expanding polytropically in a cylinder behind			
	a piston from 7 bar and 600°C to 1.05 Bar. The index of expansion is 1.25.	8		
10 a.	State and prove inequality of Clasusious.	6		
b.	State and prove principle of Increase of entropy.	6		
c.	2.5 kg of air at a pressure of 2 bar and 26°C forms a closed system; which under goes a			
	constant pressure process. With a heat addition of 650 kJ. Find the final temperature, change	8		
	in enthalpy, change in internal energy, work transfer and change in entropy.			