
An Adaptive Refresh Distributed Model for
Estimation and Efficient Tracking of Dynamic

Boundaries

Nagarathna
Dept. of Comp. Sc. and Engg

PES College of Engg.
Mandya, INDIA

Email:nagu cjg@yahoo.com

Valli. S
Dept. of Comp. Sc. and Engg.

Anna University,
Chennai, INDIA

Email:valli@annauniv.edu

Abstract—We propose a distributed algorithm for tracking
dynamic boundaries in a ranging sensor network. The main
aim here is to minimize the number of data pushes to the
sink by the observing sensors. Contour is modeled as correlated
Brownian motion with drift. Sensors continuously sample the
data. Neighboring sensors communicate and exploit the spatio-
temporal correlation and using the parameters of the contour the
time to push the sample data to the sink is predicted. A multihop
path is established between sensor to sink to route the data. To
get the global view of the contour sink apply non parametric
regression on the sensor data. Along with the sample data sensors
push the mean value so that the sink can estimate the sample
point till the next push of data from sensor. The sensors push the
data when the confidence in the estimate by the sink is below a
specified thereshold. The performance of this model is compared
with centralized model with respect to energy consumption for
routing samples to sink.

I. INTRODUCTION

Tracking dynamic fronts is one of the challenging applica-
tions of sensor network. Different aspects of this application
are been observed in the literature e.g., [1], [2], [5]–[8]. Some
of the application of tracking dynamic boundaries is like oil
and chemical spills, gas leaks, forest fires and other such
phenomena. Our main interest in this work is to reduce the
communication cost in a ranging sensor network monitoring
dynamic fonts by adaptively refreshing the measurements.

To have a global view of the contour dynamics the mea-
suring sensors need to provide the measurements to the sink.
If the sensors communicate the sample data at regular interval
of time or if the reporting rate by the sensors is determined by
the part of the boundary that change fastest, then there will be
significant wastage of resource. This is because the boundary
may change at different rates at different sections. So the main
challenge in this dynamic contour tracking is to determine the
time to communicate the data from the observing sensors to
sink.

In [5], [6] a query based adaptive refresh rate model is pro-
posed for tracking dynamic contour for a centralized system.
In a centralized system all the sensors need to communicate
the sampled data directly to the sink when queried. Most of the
energy is consumed by the sensors to communicate with the

sink. The nodes far away from the sink will have short life time
compared to nearby sensors. As the number of sensor nodes
increases, the sink will not be able to schedule the sensors,
which leads to loss of packets. In a distributed system sensor
nodes communicate with the neighbors and all scheduling and
routing is taken care by the individual node. To forward the
data to sink a multihop routing can be adopted.

In our framework we consider ranging sensors randomly
deployed in a two dimensional plane and sense the phe-
nomenon in y direction only. One of the example for such
a category is radar sensors [9] which can range up to 60 feet.
Sensors know their location and measure the distance to a
contour point and compute the location of a sample point on
the contour. An illustration of the measurement is as follows.
If a sensor Si is at location (x̌i, y̌i) and at time t its ranging
measurement in Y direction is ri(t) then the location on the
contour point is computed as (xi, yi):= (x̌i, y̌i + ri(t)). Fig 1
shows the scenario that we have considered.

(2,6)

(3,2)

(6,7)

(2,3.5)

(3,3.9)

(6,4)

(10,1)
(10,4.4)

X axis

Y
ax

is

(X,Y) - Sensor Location

(X,Y) - Sensor Measurement

Fig. 1. Illustration for the sensor observation.

We have developed a model based distributed push algo-
rithm for the sensors tracking the dynamic boundaries. The
dynamics of a boundary points are modeled to be evolving as
a correlated Brownian motion with drift. Sensors continuously
measure the boundary points, communicates with the neighbor,
but push the measurements to the sink based on the statistical
predictions. A spatio-temporal model exploiting the correlation
between the adjacent sensor is constructed to predict the time978-1-4799-6619-6/15/$31.00 c© 2015 IEEE

to push. At regular interval of time using the model parameters
sensors predicts the time to push. We compare the performance
of our distributed model with that of a centralized model with
respect to energy consumption for routing the sample and other
parameter to the sink.

A. Related Work

We now discuss some relevant literature on the tracking of
dynamic boundaries by a sensor network, e.g., [1], [3]–[8]. In
[8] subset of mobile sensors communicates the information
to the central information processor via multihop routing.
Sensors are selected based on the proximity of the mobile
nodes to other nodes inside the boundary. The nodes follow
a distributed coordination algorithm to re-position themselves
along the boundary after selection. The subset of the mobile
nodes selected for boundary estimation is not determined by
the rate of the boundary change as observed by the sensor but
is determined by the proximity of the mobile nodes.

In [3] the boundary is modeled as a hidden Markov
model and Cumulative sum algorithm is proposed which can
quickly detect small drifts in the parameters of the model.
Observations are collected from multiple sensing vehicles
which are autonomously tracking the boundary by estimating
its approximate shape. With a test bed implementation an
improved path planning algorithm for [3] is proposed in [4]
for environmental boundary tracking and estimation without
external positioning information. Even when a single node
detects the change in the location of the boundary in both these
schemes measurements are collected from all the sensors.

The main aim of [1], [5]–[7] is to minimizing the commu-
nication cost in dynamic boundary estimation. A cluster based
boundary estimation algorithm is proposed in [7]. A tree-based
boundary estimation scheme with hierarchical cluster heads is
used to reduce the number of transmissions. Each cluster has
a cluster head which reports the estimate to the sink at regular
time intervals and hence reporting rate is independent of the
rate of boundary change.

A combined spatial and temporal estimations is described
in [1]. Initially the contour is estimated and stored in the
sink. A Kalman filter based temporal estimation techniques
is used to obtain upper and lower bounds for the boundary
and communicated to the sink regularly. Sensors measure the
boundary points only when it is outside the bounds previously
obtained.

In [5], a query based refresh rate adaptation algorithm is
proposed. Contour is modeled as Brownian motion model and
the parameters of this model are continuously estimated by the
sensors. The sink uses the model and continuously update the
estimate of the sample point. Sink queries a sensor when the
confidence in the estimate of the sample point falls below a
threshold. An extension of this work is [6], where a spatio-
temporal model is proposed for tracking dynamic boundaries.
The contour evolves as correlated Brownian motion model.
The prediction model at sink uses the stastistical parameters
to pretict the time to query the senor pairs. Most recent
measurements and the other parameters are communicated to
sink directly in both [5] and [6].

In this paper we propose an adaptive refresh distributed
push model for dynamic contour tracking. The contour model

is same as in [6]. The prediction model is for the sensors
to predict the push time. Sensors push the data to sink
using the prediction model which exploits temporal correlation
between the samples of the sensor at different time and spatial
correlation between the neighboring sensors. Sensor forward
the data using multihop path to th sink.

B. Organization of the paper

The organization of the paper is as follows. In Section II
the distributed push model algorithm is explained along with
the contour modeled as correlated Brownian motion model. In
addition, the routing algorithm used in the distributed system
and the contour estimation is also explained. A detail algorithm
for sensor side and sink side is also given. In Section III we
provide the details of the simulation model of the contour and
the node deployment and also define the different performance
measures used. In addition we have one set of simulation
results discussed. In Section IV we have conclusion.

II. DISTRIBUTED PUSH MODEL

Brownian motion is a well known model which captures
the local variations and is a widely used model. We now
construct a model for the contour dynamics. Let Y (t) =
[Y1(t), Y2(t), . . . , Yi(t), Yi+1(t), . . . YN (t)] be vector of sensor
sample points at time t with x coordinates as -x1, x2, . . . , xN .
Y (t) is modeled to evolve as a correlated Brownian motion
with drift. Let the corresponding mean of the sample points
be µ(t) = [µ1(t), µ2(t), . . . µN (t)]. The parameters of this
Brownian motion are mean µ and covariance C. This means
that conditioned on Y (t), i.e., knowing the value of Y (t), the
value of Y (t+ τ) is

Y (t+ τ) = Y (t) +N(µτ,Cτ).

Here N(µ,C) is an N dimensional Gaussian random variable.
Sink uses this model to estimate sensor measurements. Now
we will explain how the sensors predicts the time to push the
sample and other parameters to the sink. We consider a cluster
of two sensors. If Si and Si+1 are the adjacent sensors in a
cluster with a samples Yi(t) and Yi+1(t) at time t, we will
make an assumption that both the sensors communicate via
single hop or multihop at regular interval of time and only the
adjacent samples are correlated. Let Yi(t) and Yi+1(t) be the
true samples at time t and ŷi(t) and ŷi+1(t) be corresponding
estimates.

Let Zi(τ) = [ŷi(t + τ) − Yi(t + τ)] and Zi+1(τ) =
[ŷi+1(t + τ) − Yi+1(t + τ)]. Here Zi and Zi+1 are a zero
mean Gaussian with variance σ2

i and σ2
i+1 respectively. Hence

Z(τ) := Zi(τ) + Zi+1(τ) will also be a zero mean Gaussian
with variance σ2τ , where σ2 is given by

σ2 = σ2
i + σ2

i+1 − 2σ2
i σ

2
i+1ρi,i+1

Here ρi,i+1 is the correlation coefficient between Si and Si+1

at time t+ τ.

We will assume that the actual contour may be interpolated
by a straight line between the points (xi, Yi) and (xi+1, Yi+1)
as illustrated in Fig 2, and get the trapezoid (xi, Yi, Yi+1, xi+1)
and call as T . Similarly for the estimated points (xi, ŷi) and
(xi+1, ŷi+1) get the trapezoid (xi, ŷi, ŷi+1, xi+1) and call as
T̂ .

We measure the time to push the data by the sensor pair
with respect to the difference in the area between the two
trapezoids T and T̂ . This is reasonable because, as (T̂ (t) −
T (t)) is minimum it implies that the estimates are close to the
actual values and the sensor pair need not have to push the
values. For the absolute error between T̂ and T , we consider
two design parameters one δ the tolerance parameter and the
other ε the confidence parameter. Sensor pair is confident that
they need not push sampled data if

Pr(|T̂ (t)− T (t)| < δ) > (1− ε) (1)

Equation (1) can be rewritten as

Pr

0@|(ŷi(t + τ) − Yi(t + τ)) + (ŷi+1(t + τ) − Yi+1(t + τ))| <
2δ

xi+1 − xi

1A
> 1 − ε

Hence, if t is the previous push time of sensors Si and
Si+1 then the next time to push can be at (t+ τ∗) where τ∗
is given by

τ∗ = arg min
τ>0
{Pr (|Z(τ)| < a) < 1− ε}

= arg min
τ>0
{Pr

(
N (0,

√
σ2τ) ∈ (−a,+a)

)
< 1− ε}

= arg min
τ>0
{1− Φ(a) + Φ(−a) > ε},

with

a =
2δ

(xi+1 − xi)
Φ(x) =

1√
2πσ2τ

∫ x

−∞
e−y

2/2σ2τdy.

If the sensor pairs are not confident at time t, then they
measure the contour point and compute µ and push the
measured data and µ to the sink. This check is made after
every ten unit of time. The detail algorithm executed at the
ith sensor is as in Algorithm (1). For (i+1)th sensor i.e., pair
of the ith sensor also it will be the same. This apply to all the
sensor pairs.

Mean µ, variance σ2 are computed as in [5] and correlation
coefficient ρ in the interval (ti, ti + τi) can be obtained using
the following equation.

ρi,i+1 =

Pτi
k=1(yi(ti + k) − ȳi(ti))(yi+1(ti + k) − ȳi+1(ti))qPτi

k=1(yi(ti + k) − ȳi(ti))2
Pτi
k=1(yi+1(ti + k) − ȳi+1(ti))

2

Here ȳi is computed as ȳi(ti) = 1
τi

∑τi
k=1 yk(ti). Simple ex-

ponential averaging will be used at the sink and neighbouring
sensors as in [6] to estimate µi and σ2

i respectively.

A. Routing for the Distributed Model

We compared the performance of our distributed algorithm
with that of centralized algorithm with respect to energy
consumption for routing. In a centralized system [5], [6]
for every query, the data and other parameters need to be
pushed to sink directly from sensors. In a distributed system,
sensors communicate with the neighbors and they schedule
the routing path. One of the simplest routing is to forward

through the shortest path from source to destination. We have
opted Dijkstra algorithm to find the shortest route from sensors
to sink. So, every sensor before pushing the data computes
the shortest route using Dijkstra algorithm and push the data
via that route. Power consumption is calculated for a link as
distance square.

xi

Xaxis

Y
a
x
is

xi+1

Estimated Sensor Data

Actual Sensor Data

Yi
Yi+1

ŷi
ŷi+1

T̂ − T

Fig. 2. Illustration for goodness of Estimation for a sensor pair.

Algorithm 1: This algorithm is executed by ith sensor Si
paired with Si+1. Condition to push the data to sink is
checked at regular intervals of time . CT is current time
and PTP is previous time of push. Sensor Si at location
(xi, yi) communicates with its neighbor Si+1 at location
(xi+1, yi+1). If sensing rate is 1 time unit the time to push
is computed for every 10 time unit

Input: Given tolerance parameter δ and the confidence
parameter ε

Initialization;
CT ← 1;
PTP (i)← CT ;
Sample Yi(CT);
a← (δ ∗ 2)/(xi+1 − xi);
Initialize µi, σ2

i , σ2
i+1 and ρi,i+1 with some

arbitrary values for CT
PUSH(Yi(CT), µi(CT)) to the sink;
for CT ← 2 to ∞ do

Sample Yi(CT);
Communicate Yi(CT) to Si+1;
Accept Yi+1(CT) from Si+1;
if (CT mod 10 = 0) then

Compute ρi,i+1(CT);
τ(i)← CT − PTP (i);
σ2
i,i+1 ← σ2

i +σ2
i+1 +2∗√σ2

i ∗
√
σ2
i+1 ∗ρi,i+1;

Φ(a)← N(a, 0,
√
σ2
i+1,i ∗ τ(i));

Φ(−a)← N(−a, 0,
√
σ2
i+1,i ∗ τ(i));

if (1 - Φ(a) + Φ(−a) > ε) then
Compute µi(CT) and σ2

i (CT);
PUSH(Yi(CT), µi(CT)) to sink;
Communicate σ2

i (CT) to Si+1;
PTP (i)← CT ;

end
end

end

B. Contour Estimation At Sink

Let x := [x1, . . . , xN] be the vector of the x-coordinates
of the N sensor locations and let Y(t) := [Y1(t), . . . , YN (t)]
be the corresponding Y -coordinates of the contour points at
time t. Sink apply non parametric regression as in [2] on these
sensors data and compute the contour points.

Non linear, non parametric regression technique is used to
estimate the boundary points between the samples assuming
that the boundary is smooth. There are two steps involved
in applying regression. First, sink finds the nearest neighbors
for the sample points using Epanechnikov kernel function and
their weights are selected using the following formula.

WT (xi) =
{

0.75[1− (|xi − x0|/h)2] if |xi − x0|/h ≤ 1
0 if |xi − x0|/h > 1

Here h indicates the half bandwidth of the window where all
the N sensor nodes are the neighbors, and xi are the sensor
locations.

After selecting and assigning the weights for the near-
est neighboring points, the second computation involves the
boundary point estimation corresponding to the x-coordinate
x0 which is computed using the Nadaraya-Watson estimator

ŷ0(t) = f̂(x0,x,y(t)) =
∑n
i=1WT (xi)yi(t)∑n
i=1WT (xi)

. (2)

The detail steps of communication and computation at sink is
as per the Algorithm (2)

III. NUMERICAL RESULTS

In this section we explain the simulation model that we
have used to provide some numerical evidence of the efficiency
of the distributed model that we have developed.

A. Simulation Model

N sensor nodes are uniformly randomly deployed from
[0, M]; x(j) is the x-coordinate of the location of sensor j.
The y-coordinate corresponding to these M discrete points are
varied to simulate the dynamics of the boundary. The dynamic
boundary points Y(t) := [Yk(t)] is modeled as correlated
Brownian motion with a constant drift with the known start and
ending time as [0, T]. The constant drift µ is M -dimensional
vector with the value µk = (Yk(0)−Yk(T))/T. The covariance
parameter C is an M×M matrix with the following condition.
Ci,i = σ2

k and for i 6= j, Ci,j = d|i−j| where d is a small
constant. Y (t) evolves as Y(t+ 1) = Y(t) + N(µ,C) where
the N(·, ·) is the M -dimensional Gaussian variable.

In the simulation process we have two sensors per cluster
with say Si and Si+1 where i and i + 1 is a odd and
even adjacent value with respect to its x axis position in the
2 dimensional plane. As explained earlier the sensor pairs
predicts the time to push the data and push µ and samples
to sink. The sink then uses simple exponential averaging to
estimate the values. We discuss the result of a sample run for
a sample deployment in Section III-D. The results for other
runs are with very similar characteristics.

Algorithm 2: This algorithm is executed by the sink.
Here Y = [Y1, Y2, . . . YN] represents the sensor data of
N sensors, Similarly PTP and τ are the vectors with the
values for all N sensors. Sink estimates the sample points
for every 1 time unit and apply regression and check for
the sensor data for every 10 time unit

Initialization ;
CT ← 1;
for i← 1 to N do

PTP (i)← CT ;
Yi(PTP (i))← Yi(CT);
µi(PTP (i))← µi(CT);

end
Apply regression and get contour points;
for CT ← 2 to ∞ do

for i← 1 to N do
τ(i) = CT − PTP (i);
Yi(CT) ←Yi(PTP (i)) + µi(PTP (i)) * τ(i);

end
if (CT mod 10 = 0) then

for i← 1 to N do
if (Si(CT) available) then

Accept Yi(CT);
Accept µi(CT);
PTP (i)← CT ;

end
end

end
Apply regression and get contour points;

end

B. Performance Measures for Estimations

In this section we explain how we measure the performance
of our distributed model.

We will first define the notation for the sample points.
We have two set of sample points. First, the actual sen-
sor points and the estimated sensor points by the sink. Let
Yj(t) := Y (xj , t), i.e., the point on the contour that will be
sampled by Sj located at a position with x coordinate xj .
Here the actual sample points for N sensors are represented
as {y(j)(t)}j=1,...,N . Since y(j)(t) is not available at the sink
at all times and it uses ŷ(j)(t) represented as {ŷ(j)(t)}j=1,...,N

for N sensors. Note that some of these estimates may be the
actual values pushed by the sensors at time t and others are
estimated values by the sink. We measure the accuracy of
estimation by computing the time average of mean square error
between yj(t) and ŷj(t) for the simulation time T,

ES :=

∑T
t=1

∑N
j=1

[
y(j)(t)− ŷ(j)(t)

]2
NT

We now give the notation for actual contour and estimated
contour which is discretised into M number of points. We
represent the actual contour as yk(t)k=1,...,M . In Fig. 3 the
sample of the contour points Yk is shown as C1 and the
contour obtained after applying regression on yj(t) is shown
as C2. The notation used for contour obtained after regression
on ŷj(t) is ỹk(t)k=1,...,M . In Fig. 3 the sample of the contour

points Ỹk is shown as C3. Observe that C3 is reasonably close
to C2 which will be used by the sink as the estimated contour.

0 50 100 150 200
0

10

20

30

40

50

60

70

x − co−ordinates of the sample points

A
c
t
u
a
l

a
n
d

E
s
t
i
m
a
t
e
d

c
o
−
o
r
d
i
n
a
t
e
s

o
f

t
h
e

c
o
n
t
o
u
r

p
o
i
n
t
s

C1

C2

C3

Fig. 3. C1 is the actual contour points; C2 is the a contour obtain from
regression through yj(t)j=1,,N , and C3 is the contour obtained from
regression through ŷj(t)j=1,,N . The result is for the value of d = 0.98
and h = 6. and after 2000 iterations with δ = 0.15 and ε = 0.2.

We measure the accuracy of estimation by computing the
time average of mean square error between yk(t) and ỹk(t)
for the simulation time T,

EC :=
∑T
t=1

∑M
k=1 [yk(t)− ỹk(t)]2

MT

To prove the efficiency of our distributed model in reducing
the communication cost we have measured the reduction in the
total number of push made by the sensors compared to

the maximum. Thus if Q is the total number of push from
all the sensors in the simulation interval T , then

PQ :=
Q

NT

All these measures are along the lines of [6].

C. Energy Consumption for Routing

As mentioned earlier we compare the performance of our
distributed model with the centralized model with respect to
energy consumed for routing. First we will explain how we
compute the energy consumption between a link connecting
two sensor nodes. Let (xi, yi) and (xj , yj) be location of two
sensor Si and Sj on a two dimensional plane. Knowing the
location we can compute the distance between the 2 sensors
as d =

√
(xj − xi)2 + (yj − yi)2. The energy consumed for

data transfer between Si and Sj is defined as square of the
distance i.e., d2 and call it as D.

• Energy Consumption in Centralized Model: Let SQ =
[s1, s2, . . . , sk] be set of sensors queried by the sink.
The calculation of energy consumption is as follows.
If k sensors are queried at time t, then all will com-
municate to the sink directly. Knowing the location
of the sink and the sensors, the energy consumed
to communicate data from each queried sensors to
sink can be computed as explained above. If DQC =
[D1, D2, . . . , DK] represents the energy consumed for

the respective sensors of SP to communicate directly
to sink, then the energy consumed over time average
for the simulation time T is

EngCC :=
∑T
t=1

∑K
k=1Dk

T
(3)

• Energy Consumption in Distributed Model: Assume
the network as a fully connected graph. Knowing the
location of all the sensors and the sink, compute and
get a weighted graph as explained above. For each
sensor compute the shortest path to the sink. For
simplicity we have considered Dijkstra algorithm to
compute the shortest path i.e., the minimum energy
path from source to destination. If k sensors need to
push data to sink at time t then the sum of the energy
consumed over time T is computed using (3) and call
as EngCD.

D. Simulation Results

100 ranging sensors (N) deployed uniformaly randomly
in a two dimensional plane of 200X200 dimension. Sink is
located at (100,100). Discrete M points i.e., 2000 points with
respect to x-axis are the contour points. Simulation time T is
discrete time from [1, 2000]. we compare the performance of
our distributed model with that of centralized model [6]. We
discuss the result with variance value σ2 = 0.01, with d =
0.98 for the correlation matrix and h= 0.6 for non parametric
regression. We have observed a quailtatively similar result for
other values.

The performance of our distributed model measured with
respect to mean square error in estimating sample points ES ,
mean square error in estimating contour points EC and the
percentage of query PQ is presented. The different perfor-
mance measures as a function of δ (tolerance) for different
ε (confidence) are shown in Fig. 4. Figs. 4(a)–4(c) are the
results for our distributed model which is same as that of the
centralized model. Figs. 5(a) and 5(b) are the results of energy
consumption as a function of δ for different values of ε for a
centralized and distributed models respectively.

From Figs. 4(a)–4(b) we can see that as the tolerance δ
increase beyond 0.2 contour tracking by sink start to worsen
and this is because of the reduction in the number of data
pushes from the observing sensors as seen in Fig. 4(c). We
can also observe that as the δ increases the number of pushes
from the sensor drastically reduces and hence the quality of
tracking. This is because the value of T̂ − T starts increasing
with increasing value of δ and intern the probability of the
estimate at the sensor pair being valid increases. Hence the
tolerance parameter should not be too large.

Figs. 5(a) and 5(b) are the plots for average energy con-
sumption for routing by the sensors to sink in the centralized
system [6] and for our distributed model as a function of δ
for different values of ε. Plots clearly show that the average
energy consumed by centralized system where all the sensors
communicate directly to sink is thrice the amount of average
energy consumed by our distributed model.

IV. CONCLUSIONS

In this paper we propose a distributed push model to
estimate and track dynamic boundaries. Contour evolves as

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Tolerance δ

E
S

e=0.1

e=0.2

e=0.3

(a)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Tolerance δ

E
C

e=0.1

e=0.2

e=0.3

(b)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

20

30

40

50

60

70

80

90

100

Tolerance δ

P
e

rc
e

n
ta

g
e

 o
f

Q
u

e
ry

P

Q

e=0.1

e=0.2

e=0.3

(c)

Fig. 4. Performance measures from a sample simulation as a function of the tolerance parameter (δ) for different values of the confidence parameter (ε) for
centralized system and for adaptive refresh distributed model which are same. 4(a) Mean square error between ŷ(j)(t) and y(j)(t),4(b) Mean square error
between yk(t) and ỹk(t) and 4(c) The number of pushes made by the sensors as a percentage of the maximum possible. The result is for the value of d = 0.98
and h = 6. and after 2000 iterations with δ = 0.15 and ε = 0.2.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n

s
u

m
e

d

E

n
g

C
C

e=0.1

e=0.2

e=0.3

(a)
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

5

Tolerance δ

A
v
e
r
a
g
e

E
n
e
r
g
y

C
o
n
s
u
m
e
d

E
n
g
C
D

e=0.1

e=0.2

e=0.3

(b)

Fig. 5. Average energy consumed for routing data to sink as a function of δ for different values of ε. 5(a) Average energy ECC , consumed for direction
communication to sink by sensors in a centralized system, 5(b) Average energy ECD , consumed for routing in distributed model. The result is for the value
of d = 0.98 and h = 6. and after 2000 iterations with δ = 0.15 and ε = 0.2.

correlated Brownian motion with drift. The sensor pair in a
cluster use the parameters of the evolving contour along with
their spatio-temporal correlation to predict the time to push the
sample data and µ values to the sink. This model parameter
µ is used by the sink to estimate the contour location. The
performance of our model in estimating the sample points,
estimating the contour and in reducing the communication cost
is measured. Distributed model is more energy efficient than
the centralized model with respect to routing. Simulation study
with different values show similar results.

V. ACKNOWLEDGEMENT

The authors would like to thank and express deep gratitude
to Professor D. Manjunath, IIT Bombay, for his valuable
suggestions and guidance in carrying out this work.

REFERENCES

[1] S. Duttagupta, K. Ramamritham, and P. Kulkarni. Tracking dynamic
boundaries using sensor network. IEEE Transactions on Parallel and
Distributed Systems, 22:286–290, October 2011.

[2] S. Duttagupta, K. Ramamritham, and P. Ramanathan. Distributed
boundary estimation using sensor networks. In Proc. of Third IEEE
International Conference on Mobile Ad Hoc and Sensor Systems, pages
316–325, October 2006.

[3] Z. Jin and A. L. Bertozzi. Environmental boundary tracking and
estimation using multiple autonomous vehicles. In Proc. of the 46th IEEE
Conference on Decision and Control, New Orleans LA USA, 2007.

[4] A. Joshi, T. Ashley, Y. R. Huang, and A. L. Bertozzi. Experimental
validation of cooperative environmental boundary tracking with on-board
sensors. In Proc. of American Control Conference, pages 2630–2635, St.
Louis MO USA, 2009.

[5] Nagarathna, Valli.S, and D. Manjunath. Using an evolution model for
efficient estimation and tracking of dynamic boundaries. In Proc. of
TENCON 2012, Cebu, Philippines, November 2012.

[6] Nagarathna, Valli.S, and D. Manjunath. A spatio-temporal model for
estimation and efficient tracking of dynamic boundaries. In Proc. of
NCC 2014, Kanpur, India, February-March 2014.

[7] R. Nowak and U. Mitra. Boundary estimation in sensor networks: Theory
and methods. In LNCS: Information Processing in Sensor Networks,
pages 80–95, 2003.

[8] A. Savvides, J. Fang, and D. Lymberopoulos. Using mobile sensing
nodes for dynamic boundary estimation. In Proc. of WAMES, pages
2630–2635, Boston MA USA, 06 June 2004.

[9] A.Arora et. al. A line in the sand: A wireless sensor network for
target detection, classification, and tracking. Computer Networks, 46(5),
December 2004.

