P15CS32 Page No 1		
	U.S.N	
Tin	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Computer Science and Engineering Semester End Examination; Dec - 2016/Jan - 2017 Digital Logic Design Max. Marks: 100	
Not	e: Answer FIVE full questions, selecting ONE full question from each unit.	
	UNIT - I	
1 a.	Explain with examples ;	
	i) Positive and Negative logic	10
	ii) NOR as universal gate	10
	iii) NAND as universal gate.	
b.	Design a minimum hardware circuit for the Boolean expression using QM technique,	10
	$f(w, x, y, z) = \sum m(0, 5, 6, 7, 9, 10, 13, 14, 15).$	IC
2 a.	Explain with examples;	
	i) De-Morgan's theorem	10
	ii) Principle of Duality	10
	iii) Consensuses theorem.	
b.	Consider a circuit with 4 variables input A, B, C, D and one output 'Z'. Output $Z = 1$ if B or	
	C is high, but not both. And also $Z = 1$, if all input is same. Design a minimum hardware	10
	circuit using K-map.	
	UNIT - II	
3 a.	Mention the building blocks of arithmetic circuits explain the same with examples.	10
b.	Implement the following expression using 4 : 1 MUX and 8 : 1 MUX,	10
	$f(A, B, C, D) = \Sigma m(0, 1, 5, 6, 7, 8, 9, 10, 15).$	10
4 a.	Explain:	
	i) 4 : 1 MUX	10
	ii) 2-bit magnitude comparator.	
b.	Implement the following using 3 : 8 decoder,	
	$f_I(A, B, C) = \Sigma m(1, 3, 4, 5)$	5
	$f_2(A, B, C) = \Sigma m (0, 2, 5, 6, 7)$	5
	$f_3(A, B, C) = \Sigma m(1, 2, 3, 6)$	
c.	Design a 6-bit odd parity generator.	5

P15CS32

5

10

5

5

UNIT - III

5 a.	Differentiate between PLA and PAL.	5			
b.	Explain edge triggered SR Flip-Flop.	5			
c.	Giving characteristic equations, state diagram and excitation fable of JK and D Flip-Flop,	10			
	convert D Flip-Flop to JK Flip-Flop.	10			
6 a.	Explain JK Flip-Flop.	5			
b.	Implement the following using PLA,				
	$f_I(A, B, C) = \Sigma m (0, 2, 3, 7)$	5			
	$f_2(A, B, C) = \Sigma m (1, 2, 4, 5)$	5			
	$f_3(A, B, C) = \Sigma m(1, 3, 5, 6, 7)$				
c.	Convert SR Flip-Flop to T Flip-Flop, giving characteristic equation, excitation table and	10			
	state diagram of SR Flip-Flop and T Flip-Flop.	10			
	UNIT - IV				
7 a.	Giving circuit diagram, truth table and wave diagram, explain SIPO shift register (4-bit).	10			
b.	Design a counter using JK flip flop that counts as, $2 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 4 \rightarrow$	10			
8 a.	Briefly explain the different applications of shift register.	10			
b.	Using T Flip-Flops design a synchronous counter that counts in the following sequence,	10			
	$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0 \dots$	10			
UNIT - V					
9 a.	Briefly explain :				
	i) Binary ladder	10			
	ii) A/D counter method conversion.				
b.	Write Verilog/VHDL code to implement 3 : 8 decoder.	5			

c. Write Verilog/VHDL code to implement Johnson counter.

10 a. Explain the different A/D techniques.

- b. Write Verilog / VHDL code to implement 8:1 MUX.
- c. Write Verilog / VHDL code to implement 3-bit up counter and down counter.

* * *