

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belgaum)
 Third Semester, B.E. - Computer Science and Engineering
 Semester End Examination; Dec - 2016/Jan - 2017
 Digital Logic Design

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Explain with examples ;
i) Positive and Negative logic
ii) NOR as universal gate
iii) NAND as universal gate.
b. Design a minimum hardware circuit for the Boolean expression using QM technique, $f(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum \mathrm{m}(0,5,6,7,9,10,13,14,15)$.

2 a. Explain with examples;
i) De-Morgan's theorem
ii) Principle of Duality
iii) Consensuses theorem.
b. Consider a circuit with 4 variables input A, B, C, D and one output ' Z '. Output $Z=1$ if B or C is high, but not both. And also $\mathrm{Z}=1$, if all input is same. Design a minimum hardware circuit using K-map.

UNIT - II

3 a . Mention the building blocks of arithmetic circuits explain the same with examples.
b. Implement the following expression using $4: 1 \mathrm{MUX}$ and $8: 1 \mathrm{MUX}$,
$f(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1,5,6,7,8,9,10,15)$.
4 a. Explain:
i) 4 : 1 MUX
ii) 2-bit magnitude comparator.
b. Implement the following using $3: 8$ decoder,
$f_{l}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(1,3,4,5)$
$f_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,2,5,6,7)$
$f_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(1,2,3,6)$
c. Design a 6-bit odd parity generator.

UNIT - III

5 a . Differentiate between PLA and PAL. 5
b. Explain edge triggered SR Flip-Flop. 5
c. Giving characteristic equations, state diagram and excitation fable of JK and D Flip-Flop,convert D Flip-Flop to JK Flip-Flop.
6 a. Explain JK Flip-Flop. 5b. Implement the following using PLA,

$$
f_{l}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,2,3,7)
$$

$$
f_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(1,2,4,5)
$$

$$
f_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(1,3,5,6,7)
$$

c. Convert SR Flip-Flop to T Flip-Flop, giving characteristic equation, excitation table and 10 state diagram of SR Flip-Flop and T Flip-Flop.
UNIT - IV
7 a. Giving circuit diagram, truth table and wave diagram, explain SIPO shift register (4-bit). 10
b. Design a counter using JK flip flop that counts as, $2 \rightarrow 1 \rightarrow 0 \rightarrow 3 \rightarrow 5 \rightarrow 6 \rightarrow 4 \rightarrow \ldots$ 10
8 a . Briefly explain the different applications of shift register. 10
b. Using T Flip-Flops design a synchronous counter that counts in the following sequence, 10
$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 0 \ldots$
UNIT - V
9 a. Briefly explain :
i) Binary ladder 10ii) A / D counter method conversion.
b. Write Verilog/VHDL code to implement $3: 8$ decoder. 5
c. Write Verilog/VHDL code to implement Johnson counter. 5
10 a . Explain the different A / D techniques. 10
b. Write Verilog / VHDL code to implement 8:1 MUX. 5
c. Write Verilog / VHDL code to implement 3-bit up counter and down counter. 5

