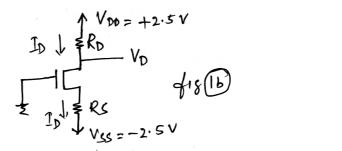
U.S.N			

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)


Third Semester, B.E. - Electronics and Communication Engineering Semester End Examination; Dec - 2016/Jan - 2017 Analog Electronics Circuits

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. Draw the Physical structure of the Enhancement type NMOS transistor. Mention the different parts.
- b. Design the circuit of Fig. 1b. The transistor operation at $I_D=0.4$ mA, $V_D=0.5$ V, $V_{th}=0.7$ V, L=1 μm and W=32 μm and $\mu_n C_{OX}=100$ $\mu A/V^2$, Assume $\lambda=0$.

- c. What is biasing? Explain biasing using a constant current source.
- 2 a. With relevant diagram derive the equation for finite output resistance of a MOSFET.
 - b. Draw and explain the small signal operation of the common source MOSFET amplifier.

UNIT - II

- 3 a. Define the:
 - i) CMRR ii) Slew rate iii) PSRR.
 - b. Explain the working of differential input/output amplifier.
 - c. Develop the equation for Z_{in} for high input impedance capacitor coupled Voltage Follower.
- 4 a. Explain with circuit diagram and derive an equation for the output voltage of a two input Inverting and non-inverting summing amplifier.
 - b. Design capacitor coupled investing amplifier, a signal frequency range of 50 Hz to 1 kHz is applied. If the R_L is 250 Ω , calculate the requried capacitor values and sketch the circuit with values. Assume $R_1 = 1$ k Ω and $R_2 = 47$ k Ω .

UNIT - III

5 a. Define gain bandwidth product. Determine the upper cutoff frequency for a voltage follower with $A_{OL} = 40$ DB and gain bandwidth product is 1 MHz.

8

8

10

10

6

4

12

8

5

P15	Page No 2	
b.	Mention the any five precautions for Op-Amp circuit stability.	5
c.	Explain with neat sketch the Integrating circuit. Discuss its DC operation.	10
6 a.	Explain miller effect. Derive the equation relating the input capacitance of an inverting amplifier.	8
b.	Discuss the effects of slow rate of an Op-Amp.	6
c.	Explain with neat sketch the current amplifier and derive an equation for current gain.	6
	UNIT - IV	
7 a.	With circuit diagram and waveform, explain the working of a saturating precision full wave rectifier.	10
b.	Explain with neat diagram of Astable multi vibrator using Op-Amp.	10
8 a.	Sketch the circuit of a voltage type peak detector. Explain the circuit operation.	10
b.	Draw an Op-Amp sample and hold circuit. Sketch the signal, control and output voltage waveforms. Explain the circuit operation.	10
	UNIT - V	
9 a.	Draw circuit and output waveform of a triangular wave generator. Explain the circuit operation.	10
b.	using a BIFET Op-Amp with a supply of \pm 12 V, design a Wein Bridge oscillator to have an output frequency of 15 kHz, Choose $C = C_1 = C_2 = 0.01 \mu f$.	6
c.	Explain the operation of DC voltage regulator with sketch.	4
10 a.	What is Barkhansen Criterion? Explain how oscillation starts in an oscillator.	6
b.	Sketch the circuit of 2 nd order Low pass Active filter and explain the circuit operation.	10
c.	Draw the basic circuit of a 723 IC DC voltage Regulator.	4