U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec - 2016/Jan - 2017 Digital Electronics

Tir	me: 3 hrs Max. Marks: 100	
Not	te: Answer FIVE full questions, selecting ONE full question from each unit.	
	UNIT - I	
1 a.	What are the different levels of Integration?	6
b.	Prove that :	
	i) $AB + A(B+C) + B(B+C) = B + AC$ ii) $A\overline{B}C + \overline{A}BC + ABC = A(B+C)$.	(
c.	Simplify the following Boolean Expressions:	
	i) $(\overline{A} + C)(\overline{A} + \overline{C})(\overline{A} + B + \overline{C}D)$	8
	ii) $\overline{X} Y + X Y + X \overline{Z} + X \overline{Y} \overline{Z}$.	
2 a.	State and prove distributive law and redundant literal rule.	(
b.	Find the complements of following given Boolean expression:	
	i) $\overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + A\overline{B}\overline{C}$	(
	ii) $\overline{A} B + A \overline{BC} + \overline{A} B C D + \overline{A} \overline{BC} \overline{D} E$.	
c.	Implement the basic gates using universal gates.	8
	UNIT - II	
3 a.	Differentiate between a prime implicant and a non-prime implicant and an essential prime	8
	implicant and a non-essential prime implicant with an example.	(
b.	What is full adder? Realize using NAND gates.	(
c.	Reduce using mapping the expression and implement using AOI logic	
	$F = \Sigma m (2, 3, 6, 7, 8, 10, 11, 13, 14).$	(
4 a.	What is parallel adder? Design Four bit look ahead carry generator.	1
b.	Obtain the minimal sum of products for the function,	1
	$F(A, B, C, D) = \Sigma m(1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 15)$ using Quine Mc-Clusky method.	1
	UNIT - III	
5 a.	Give the comparison between multiplexer and demultiplexer.	4
b.	With the help of logic diagram and truth table explain D flip-flop and S-R flip-flop.	1
c.	Design Octal to Binary Encoder.	5

P15EE34 Page No 2		
6 a.	Give comparison between decoder and encoder.	4
b.	What is race around condition in flip-flop? Explain how it is eliminated?	8
c.	Design BCD to decimal decoder with the use of decoder.	8
	UNIT - IV	
7 a.	Explain Mealy and Moore models of a clocked synchronous sequential network.	8
b.	Design of a synchronous Mod-6 counter using J-K Flip-Flops.	12
8 a.	With neat timing diagram, explain 4-bit SISO's and PISO register.	12
b.	b. With the help of logic diagram and state diagram, explain the operation of johnson counter	
	and ring counter.	8
	UNIT - V	
9 a.	With the help of a neat diagram, explain the working of successive-approximation type	10
	ADC.	
b.	With the help of a neat diagram, explain the operation of a 2-input CMOS NOR gate.	10
10 a.	With the help of a neat diagram, explain the working R-2R ladder network type DAC.	12
b.	With neat circuit diagram, explain the operation of a 2-input NAND gate with Totem pole	8
	output.	ð