P	15MCA12 Page No 1			
	U.S.N			
and the second se	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, Master of Computer Applications (MCA) Make-up Examination; Feb - 2017 Discrete Mathematical Structures			
7	Time: 3 hrs Max. Marks: 100			
N_{i}	ote: Answer FIVE full questions, selecting ONE full question from each unit.			
1.0	UNIT - I			
1 a.	How many 8 character password can be constructed selecting 5 alphabets followed by 3 digits such that,			
	i) Without any restrictionii) Without repetition of a alphabets and digitsiii) Only vowels must be used.	6		
b.	How many positive integers n can be formed using the digits 3, 4, 4, 5, 5, 6, 7, if we want n to exceed 5,000,000 or even.	7		
c.	Find the number of ways in which 7 apples and 6 oranges are distributed among 5 children such that each child must get atleast one apple.			
2 a.	For any three sets A B C verifies. $A\Delta(B\Delta C) = (A\Delta B)\Delta C$	6		
b.	Determine $ A \cup B \cup C $ when			
	A = 50, B = 500, C = 5000			
	i) $A \subseteq B \subseteq C$ ii) $A \cap B = B \cap C = A \cap C = \phi$	7		
	iii) $ A \cap B = A \cap C = B \cap C = 3$ and $ A \cap B \cap C = 1$			
0				
c.	When two fair dice are rolled what is the probability that;i) 6 is the sum of two dice.ii) Sum is at least 7.iii) Sum is even.	7		
	UNIT - II			
3 a.	Define tautology and show that, $[(p \lor q) \land (p \to r) \land (q \to r)] \to r$ is a tautology.	6		
b.	Prove the logical equivalence without using truth table.			
	$(p \rightarrow q) \land (\neg q \land (r \lor \neg q)) \cong q \land p$	6		
c.	Express symbolically and check validity of the given argument.			
	"If it rains, I'll not come to your house			
	If I come to your house, we will go for shopping.	8		
	It is raining.			
	Therefore, we will not go for shopping.			

Page No... 2

P15MCA12

- 4 a. Define quantifiers with two examples for each.
 - b. If $p(m): x \ge 0$ $r(x): x^2 3x 4 = 0$ $q(x): x^2 \ge 0$ $s(x): x^2 - 3 > 0$

Find the truth value of the following,

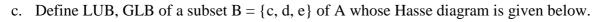
vi) How many are equivalence relation on A.

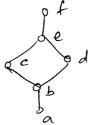
i)
$$xp(x) \land q(x)$$
 ii) $\forall xp(x) \rightarrow q(x)$ iii) $\forall xr(x) \lor s(x)$ iv) $xp(x) \land r(x)$

c. Show that the argument is valid.

"No engineering student of first or second semester studies logic. Anil is an engineering 6 student who studies logic. ∴ Anil is not in second semester.

UNIT - III

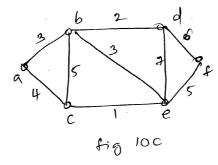

- 5 a. Write a direct and indirect proof for the statement "If n is odd then n + 9 is even" 6 b. If $H_1 = 1$, $H_2 = 1 + \frac{1}{2}$, $H_3 = 1 + \frac{1}{2} + \frac{1}{3} \dots H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ 7 are Harmonic numbers then $\forall n \in Z^+$, $\sum_{i=1}^n H_i = (n+1)H_n - n$ c. Obtain the recursive definition for the sequence in each of the following, 7 ii) $b_n = 2 - (-1)^n$ i) $a_n = 5n$ iii) $a_n = 9n + 8$ 6 a. Define stirlings number of second kind and evaluate S(8, 6). 7 b. Let f, g be two functions defined on Z, as $f(x) = 2x+1, \quad g(x) = x^3 - x$ 7 find $fog(x), gof(x), fof(x), gog(x), f^{-1}(x), g^{-1}(x)$ c. State pigeonhole principle. An office employs 13 clerks. Show that at least 2 of them will 6 have birthdays during the same month of the year. UNIT - IV 7 a. Let 'R' be a relation defined as "exactly divides on A = $\{1, 2, 3, 6, 20, 50, 80\}$ ii) Prove that R is a partially ordered relation. i) Write M (R) 8 iii) Draw the Hasse diagram of (A,R)b. i) How many relations are there from A to B if |A| = 5 |B| = 4ii) How many binary relations are there on A iii) How many binary relations are there on B. iv) How many binary relations on A are reflexive relations? 6 v) How many binary relations on B are reflexive relations?


6

8

P15MCA12

6


8 a.	Let A = {1, 2, 3, 4, 5} and define R on A x A by (x, y), $R(x_2, y_2)$ iff $x_1 + y_1 = x_2 + y_2$					
	i) Verify that R is an equivalence relation on A x A	8				
	ii) Determine the partition induced by R on A x A.					
b.	b. Let $A = \{1, 2, 3, 4\}$ $B = \{w, x, y, z\}$ $C = \{5, 6, 7\}$					
	R_1 : A →B defined by $R_1 = \{(1, x) (2, x) (3, y) (3, z)\}$					
	$R_2: B \rightarrow C$ defined by $R_2 = \{(w, 5) (x, 6)\}$	6				
	$R_3: B \rightarrow C$ defined by $R_3 = \{(x, 5) (w, 6)\}$					
	Find $(R_1 \circ R_2)$, $(R_1 \circ R_3)$, $(R_1 \circ R_2) \cup (R_1 \circ R_3)$, $(R_1 \circ R_2) \cap (R_1 \circ R_3)$					
c.	Draw the Hasse diagram that represents positive divisors of 50, 100.	6				
UNIT - V						
9 a.	Distinguish between:					
	i) Simple and multiple graphs ii) Connected and disconnected graphs	8				
	iii) Euler graphs and Hamiltonian graphs.					
b.	Define isomorphism between two graphs with an example.	6				
c.	Write short notes on Konigsberg bridge problem related to origin of graph theory.					

10 a. Define;	i) Rooted tree,	ii) Binary tree	
	iii) M – ary tree	iv) Complete m – ary tree	6
	v) Balanced tree with an example for each.		

- b. Construct an optimal prefix code tree for the message "HAPPY JOURNEY". Indicate the code that has been generated by the tree.
- c. Find the minimal spanning tree of the given connected graph using,

i) Prim's Algorithm

ii) Krushkal's Algorithm

7

7