U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

First Semester, Master of Computer Applications (MCA)

Make-up Examination; Feb - 2017 Fundamentals of Computer Organization

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

c. What is Bus? Explain single bus structure.

11	ole. Answer FIVE jun questions, selecting ONE jun question from each unit.	
	UNIT - I	
1 a.	Convert the following indicated base conversions:	
	i) $(111110001.111)_2 = (?)_{16}$ ii) $(2751.624)_8 = (?)_{10}$	12
	iii) $(5827.9)_{10} = (?)_{16}$ iv) $(305.C)_{16} = (?)_2$	12
	v) $(2374)_8 = (?)_{10}$ vi) $(110101111)_2 = (?)_8$.	
b.	List the steps to perform subtraction using r's complement. Apply for the given binary	
	numbers:	8
	M = 1010100, N = 1000011.	
2 a.	Explain Huntington's postulates.	8
b.	Simplify the following Boolean function to a minimum number of literals,	4
	$F = xy + \overline{x}z + yz.$	4
c.	Express the Boolean function in a,	
	i) Sum of min terms $F = A + \overline{B}C$ ii) Product of max term $F = xy + \overline{x}z$.	8
	UNIT - II	
3 a.	Determine the minimal SOP and POS for the following function,	
	i) $f(W, X, Y, Z) = \sum (0, 1, 2, 5, 8, 9, 10)$ ii) $f(A, B, C, D) = \sum (1, 3, 7, 11, 15) + d(0, 2, 5)$.	10
b.	List the rule for obtaining the NAND logic diagram from a Boolean function. Implement the	
	following function with NAND gates:	10
	$f(X,Y,Z) = \sum (0, 6).$	
4 a.	Define Full-Subtractor. Explain Full-Subtractor circuit using two Half-Subtractor.	10
b.	Design a BCD-to-Decimal decoder.	10
	UNIT - III	
5 a.	Explain clocked JK Flip-Flop.	10
b.	Discuss BCD Ripple counter with state diagram, logic diagram, timing diagram and block	1.0
	diagram.	10
6 a.	With a neat diagram, explain the Basic operational concept of a computer.	10
b.	Define computer. Explain various types of computers.	6

4

UNIT - IV

7 a.	a. Explain Indirect addressing mode and Indexed addressing mode with a programming example			
	each.			
b.	Explain the Basic Instruction types with an example.	10		
8 a.	How do Interrupts are enabled and disabled? Explain.	6		
b.	With a neat diagram, explain how the simultaneous interrupt requests are handled?	6		
c.	What is an exception? Discuss the types of exceptions.	8		
	UNIT - V			
9 a.	Explain ROM and its types.	10		
b.	Explain Direct mapping and Associative mapping technique of cache memory.	10		
10 a.	Write a note on:			
	i) Static memories (SRAM)	10		
	ii) Dynamic memories (DRAM)			
b.	Explain the translation process of memory address from its virtual address into physical			
	address.	10		

* * *