U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Mechanical Engineering Semester End Examination; Dec - 2016/Jan - 2017 Material Science and Metallurgy

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.

- ii) Draw neat sketch wherever necessary and answer should be specific.
- iii) Assume suitably missing data, if any.

	UNIT - I					
1 a.	Define:	1				
	i) Unit cell ii) Space lattice.	4				
b.	With the help of neat sketch, explain:					
	i) BCC ii) FCC iii) HCP.	8				
c.	Define Co-ordinate Number (CN) and Atomic Packing Factor (APF). And also give values of					
	CN and APF for SC, BCC, FCC and HCP.	8				
2 a.	Give the classification of crystal imperfections.	4				
b.	With the help of neat sketch, explain screw dislocation.	8				
c.	State and explain Fick's law of Diffusion for steady state Diffusion.					
	A plate of Iron exposed to carburizing atmosphere on one side and a decarburizing atmosphere					
	on the other side at temperature 700°C. If a condition of steady state is achieved, calculate the	8				
	diffusion flux of carbon through the plate. If the concentration of carbon at positions of 5 and	O				
	10 mm beneath the carburizing surface are 1.2 and 0.8 kg/m³ respectively. Assume coefficient					
	of diffusion as $3x10^{-11}$ m/s at this temperature.					
	UNIT - II					
3 a.	With help of neat sketch explain engineering stress and strain and true stress and strain.	8				
b.	What is plastic deformation? With help of sketch, explain any one of plastic deformation mechanism.	8				
c.	List various properties under elastic and plastic deformations zones.	4				
4 a.	Explain various stages of ductile fracture with help of neat sketch.					
b.	. With help of creep curve, explain creep failure.					
c.	Sketch and explain briefly various fatigue loads.	4				
	UNIT - III					
5 a.	Explain terms:					
	i) Component ii) System iii) Phase and solubility.	4				

P15ME32 Page N		
b.	Give rules governing formation of solid solution.	8
c.	Draw a phase diagram for Eutectic system and label all its parts.	8
6 a.	Draw a neat sketch of iron-carbon equilibrium diagram and label various phases reactions on it.	10
b.	Explain the various steps involved in construction of TTT diagram for eutectoid steel (0.8%C).	10
	UNIT - IV	
7 a.	List various types of annealing and explain spheroidising annealing.	10
b.	Give the objectives of hardening and explain hardening process.	10
8 a.	Explain joining end-quench test with suitable sketch.	10
b.	Explain participation hardening with help of Al-Cu phase diagram.	10
	UNIT - V	
9 a.	Explain Galvanic cell corrosion and also mention few methods to control the same.	10
b.	Write a short note on:	
	i) Polarization	10
	ii) Passivation.	
10.	Write short notes on any two:	
	i) Corrosion prevention methods	20
	ii) Cathode protection	20
	iii) Stress corrosion cracking.	