]	P15ME35 Page No 1				
	U.S.N				
er e	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) Third Semester, B.E Mechanical Engineering Semester End Examination; Dec - 2016/Jan - 2017 Basic Thermodynamics				
-	Time: 3 hrs Max. Marks: 100				
1	<i>Note: i) Answer FIVE full questions, selecting ONE full question from each unit.</i> <i>ii) Use of Thermodynamics data hand book is allowed.</i>				
	UNIT - I				
1 a	a. Define the following terms :				
	(i) Control volume (ii) Quasistatic process	8			
	(iii) Zeroth law of thermodynamics (iv) Reversible process.				
ł	b. What is an adiabatic process? Derive an expression for work done in an adiabatic process.	8			
C	c. Explain microscopic and microscopic point of views in the study of thermodynamics.	4			
2	a. Give the thermodynamic definition of work and heat.	4			
ł	b. Explain with a neat sketch an example to indicate the difference between heat and work flow.	6			
C	c. Work supplied to a closed system is 160 kJ. The initial volume is $V_1 = 0.8 \text{ m}^3$ and the				
	pressure of the system varies $P = 7 - 3v$, where P is in Bar and v is in m ³ . Determine the final	10			
	volume and pressure of the system.				
	UNIT - II				
3 e	a. Define first law of thermodynamics. Show that for a closed system undergoing a cyclic	_			
	process, $\Delta Q = (E_2 - E_1) + \Delta W$.	6			
ł	b. Define enthalpy and show that enthalpy $H = U + PV$.	6			
C	c. An engine has a volume of 60 litres and a compression ratio of 14.2 to one. At the beginning				
	of compressions stroke, the pressure and temperature are 1 Bar and 80°C. At the end of				
	compression process the pressure is 30 Bar. The charge is now heated at constant pressure	8			
	until the volume is doubled. Determine, index of compression, temperature at the end of				
	compression, and work done.				
4 a	a. What is steady flow process and what are the conditions to be satisfied by a steady flow				
	process? Given an example.	6			
ł	b. Define specific heats, and show that $R = C_P - C_V$.	6			

c. 12 kg of air/ minute is delivered by a centrifugal air compressor. Air enters at 12 m/s and the compressed air leaves at 90 m/s. The increase in enthalpy of air passing through the compressor is 150 kJ/kg. Find the power required to drive the compressor. Also determine the ratio of inlet to outlet diameter, assuming that both pipes are at the same level.

8

UNIT - III

5 a.	Define the following terms :					
	(i) Dryness fractions (ii) Two property rule	8				
	(iii) Sub cooled liquid (iv) Triple point of water.					
b.	. With a neat sketch, explain temperature-volume diagram and name the salient points (water).					
c.						
	main when the steam is flowing at a pressure of 6 Bar. The steam after passing through the					
	calorimeter comes at out of 100 kPa pressure and 120°C temperature. Calculate the dryness					
	fraction of steam in the main.					
6 a.	With the help of neat sketch, explain the working of a combined separating and throttling					
	calorimeter.	8				
b.	Sketch the temperature-enthalpy diagram for water and name the salient points.	4				
c. Steam at 10 Bar and 0.95 dryness is available. Determine the final condition of steam in e						
	of the following cases :					
	(i) 160 kJ of heat is removed at constant pressure					
	(ii) It is cooled at constant volume till the temperature inside falls to 140°C.	8				
	(iii) Steam expands isentropically in a steam turbine developing 300 kJ of waste per kg of					
	steam when the exit pressure of the steam is 0.5 bar.					
	UNIT - IV					
7 a.	Define two statements of second law of thermodynamics and comment on them.	6				
b.	Show that all reversible engines have the same efficiency when working between the same two reservoirs.					
c.	There are three reservoirs at temperature 827°C, 127°C and 27°C in parallel. Reversible heat					
	engine operates between 827°C and 127 °C and a reversible refrigerator operates between					
	127°C and 27°C respectively. 500 kJ of heat is extracted from the reservoir at 827 °C by the	8				
	heat engine and 250 kJ of heat is abstracted by the refrigerator from the reservoir at 27°C.	0				
	Find the net amount of heat delivered to the reservoir at 127°C. Sketch the arrangement of					
	reservoirs.					
8 a.	Define heat engine and heat pump or refrigerator. Write an expression for the efficiency of	6				
	heat engine and heat pump.	0				
b.	What is a perpetual motion machine of second kind? Explain with neat sketch the working of	6				
	PPM-II kind.	U				
c.						
c.	Two Carnot engines work in series in between the source and sink temperature of 550°K and	8				
с.	Two Carnot engines work in series in between the source and sink temperature of 550°K and 350°K. If both engines develop equal power determine the intermediate temperature.	8				

P15ME35

6

8

6

6

UNIT - V

9 a.	Define entropy and s	ow that entropy is a	property of the system.
------	----------------------	----------------------	-------------------------

- b. Show that T.ds = dU + Pdv starting from first law of thermodynamics and hence derive an expression for change in entropy. 6
- c. Calculate the change in entropy of one kg of air expanding polytropically in a cylinder behind a piston from 7 bar and 600°C to 1.05 Bar. The index of expansion is 1.25.
- 10 a. State and prove inequality of Clasusious.
 - b. State and prove principle of Increase of entropy.
 - c. 2.5 kg of air at a pressure of 2 bar and 26°C forms a closed system; which under goes a constant pressure process. With a heat addition of 650 kJ. Find the final temperature, change 8 in enthalpy, change in internal energy, work transfer and change in entropy.

* * *