P15PH12 Page No 1			
(Repair			
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belgaum) First Semester, B.E Semester End Examination; Dec - 2016/Jan - 2017 Engineering Physics (Common to all Branches)			
	Time: 3 hrs Max. Marks: 100		
N	ote: Answer FIVE full questions, selecting ONE full question from each unit.		
	Physical Constants: Electron mass= $9.11 \times 10^{-31} kg$, Planck's constant = $6.63 \times 10^{-34} Js$,		
	Electron Charge = 1.602×10^{-19} C, Boltzmann Constant = 1.38×10^{-23} J/K, Avogadro number =		
	6.025×10^{26} /K mole, Permittivity of free space = 8.854×10^{-12} F/m, Velocity of light = 3×10^8 m/s.		
1			
1 a.	Define the terms 'Stream line flow' and Turbulent flow. Derive Euler's equation of motion along a stream line.		
b.	Write a note on mechanical energy and efficiency of fluids.		
	The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure, calculate		
	the electronic polarizability of sulphur. Given;		
	Density of sulphur = 2.07 gm/cc and atomic weight = 32.07 .		
2 a.	What is internal field? Derive an expression for internal field in the case of solids.		
	Define dielectric polarization. Explain briefly electronic polarization and orientation		
	polarization.		
c.	State Bernoulli's theorem. Mention its limitations.		
	UNIT - II		
3 a.	Define group velocity. Derive an expression for deBroglie wavelength using the concept of group velocity.		
b.	State and explain Wein's law, Rayleigh-Jeans law and Planck's law of reduction.		
c.	In a measurement that involved a maximum uncertainty of 0.003%, the speed of an electron		
	was found to be 800 m/s. Calculate the corresponding uncertainty involved in determining its position.		
4 a.	Assuming the time independent Schrodinger wave equation, discuss the solution for a		
	particle in one dimensional potential well of infinite height. Hence obtain the normalized		
	wave function.		
b.	State and explain Heisenberg uncertainty principle. Show that the electron does not exist inside the nucleus of an atom by uncertainty principle.		
	inside the nucleus of an atom by uncertainty principle.		

Page No... 2

5

c. A fast moving neutron is found to have an associated deBroglie wavelength of $2x10^{-12}$ m. Find its kinetic energy and group velocity of the deBroglie waves using the relativistic change in mass. Mass of Neutron = 1.675×10^{-27} kg.

P15PH12

UNIT - III

5 a.	Define density of states. Derive an expression for the density of states for conduction	8		
	electrons for unit volume of metal.	0		
b.	What are the conduction electrons? Explain the failures of classical free electron theory.	7		
c.	What are intrinsic and extrinsic semiconductors? The intrinsic carrier density at room			
	temperature in Ge is 2.37×10^{19} /m ³ . If the electron and hole mobility are 0.38 m ² V ⁻¹ s ⁻¹ and	5		
	$0.18 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$ respectively. Calculate the resistivity.			
6. a.	Derive an expression for the electron concentration in an intrinsic semiconductor.	8		
b.	Write a note on the significance of Fermi level in n-type and p-type semiconductors.	7		
c.	Show that occupation probability at $E = E_F + \Delta E$ is equal to non-occupation probability at	~		
	$E = E_F - \Delta E.$	5		
UNIT - IV				
7 a.	Explain the variation of density of states for different quantum structures.	8		
b.	With a neat diagram, explain the construction and working of scanning tunneling	7		
	microscope.	,		
c.	What is superconductivity? Write a note on BCS theory.	5		
8 a.	Write short note on:	8		
	i) Superconducting magnet ii) Maglev vehicle.	0		
b.	Discuss Type-I and Type-II superconductors.	7		
c.	What are carbon nanotubes? Mention any two properties and two applications of nanotubes.	5		
UNIT - V				
9 a.	Describe the construction and working of a semiconductor laser diode.	5		
b.	Explain the experimental method of determining the velocity of ultrasonics in liquids.	5		
c.	Explain the acoustic requirements of a good auditorium.	5		
d.	Describe the basics of point-point communication system using optical fibres.	5		
10 a.	With neat diagrams explain the step-index multimode and graded index multimode fibres.	5		
b.	Explain how flaw in a solid can be detected using ultrasonics.	5		
c.	Derive the relations between Einstein's coefficients.	5		
d.	Explain the various factors that affect architectural acoustics.	5		