


Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I

- 1 a. Describe the following :
 - iii) offset nulling i) Input offset voltage ii) Input offset current
 - b. A 741 Op-amp is used in a non-inverting amplifier with a voltage gain of 50. Calculate the typical output voltage that would result from a common mode input with a peak level of 100 mV.
 - The circuit in Fig. Q1(c) uses a 741 Op-amp and has $R_1 = R_2 = 22 \text{ k}\Omega$ with a resistor tolerance c. of $\pm 20\%$. Determine the maximum input offset voltage due to,

i) The 741 specified input offset voltage

ii) The 741 input offset current

iii) The resistor tolerance

- 2 a. Design an inverting amplifier using a 741 Op-amp. The voltage gain is to be 50 and the output voltage amplitude is to be 2.5 V.
 - b. Design a capacitor-coupled voltage follower using a 741 Op-amp. The lower cut off frequency for the circuit is to be 50 Hz and the load resistance is $R_L = 3.9 \text{ k}\Omega$.
 - Describe capacitor coupled non-inverting amplifier. c.

UNIT - II

- Using a LF353 BIFET Op-amp, design a high Z_{in} capacitor coupled non-inverting amplifier to 3 a. have a low cut off frequency of 200 Hz. The input and output voltages are to be 15 mV and 3 V 12 respectively and the minimum loads resistance is $12 \text{ k}\Omega$.
 - b. Sketch the circuit of a capacitor-coupled non-inverting amplifier using a single-polarity supply. Explain.
- 4 a. Describe the following frequency compensation methods;
 - 10 i) Phase-lag ii) Phase lead iii) Miller effect

7

6

7

7

8

5

8

P08EC44

Page No... 2

6

4

4

- b. Calculate the slew rate limited cutoff frequency for a voltage follower circuit using a 741 op-amp, if the peak of sine wave output is to be 5 V. Also determine the maximum peak value of the sinusoidal output voltage that will allow the 741 voltage follower circuit to operate at the 800 kHz unity-gain cutoff frequency.
- c. List any four circuit stability precautions.

UNIT - III

- 5 a. Draw the circuit of a precision voltage source using an op-amp and a Zener diode. Explain the circuit operation and derive the equation relating V₀ and V_z.
 - b. Show how a half-wave precision rectifier can be combined with a summing circuit to produce a full wave precision rectifier. Draw the voltage wave forms throughout the circuit and write 10 equations to show that full-wave rectification is performed.
- 6 a. A ±5v, 10 kHz square wave from a signal source with a resistance of 100 Ω is to have its positive peak clamped precisely at ground level. Tilt on the output is not to exceed 1% of the peak
 10 amplitude of the wave. Design a suitable op-amp circuit. Use a supply of ±12 V.
 - b. Sketch a precision rectifier peak detector circuit, draw the input and output wave forms and explain the circuit operation. Write the equation for calculating the capacitor value for a peak 10 detector circuit.

UNIT - IV

7 a.	Sketch the circuit of a triangular/rectangular wave form generator. Draw the output waveforms	10
	from the circuit showing their phase relationship and explain the circuit operation.	10
b.	Using a 741 op-amp with a supply of ± 12 V, design a phase shift oscillator to have an output	10
	frequency of 3.5 kHz.	10
8 a.	Using a 741 op-amp with a supply of ± 12 V, design a inverting Schmitt trigger circuit to have a	10
	trigger points of ± 12 V.	10
b.	Design a second-order high-phase active filter to have a cutoff frequency of 6 kHz.	10
	Use a 714 op-amp.	10
	UNIT - V	
9 a.	Describe the operations of series op-amp voltage regulator.	8
9 a. b.		8 8
	Describe the operations of series op-amp voltage regulator.	8
b.	Describe the operations of series op-amp voltage regulator. Sketch the basic circuit of a 723 IC DC voltage regulator. Explain.	
b.	Describe the operations of series op-amp voltage regulator. Sketch the basic circuit of a 723 IC DC voltage regulator. Explain. Define the following :	8 4
b. c.	Describe the operations of series op-amp voltage regulator. Sketch the basic circuit of a 723 IC DC voltage regulator. Explain. Define the following : i) Line regulation ii) Load regulation	8

c. Write a note on VCO.