U.S.N \square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
 Fourth Semester, B.E. - Computer Science and Engineering
 Semester End Examination; May/June - 2018
 Theory of Computation

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a . Design a DFA for the following languages :
i) $L=\left\{w(a b+b a) \mid w \in\{a, b\}^{*}\right\}$
ii) $L=\left\{w| | w \mid \bmod 5 \neq 0 \quad\right.$ where $\left.w \in\{a, b\}^{*}\right\}$
b. Convert the below NFA into its equivalent DFA.

c. Mention the difference between DFA, NFA and $\in-$ NFA.

2 a . Convert the $\in-$ NFA to equivalent DFA.

b. Define distinguishable and indistinguishable pairs: Minimize the following DFA.

	0	1
$\rightarrow \mathrm{Q}_{1}$	Q_{2}	Q_{3}
Q_{2}	Q_{3}	Q_{5}
Q_{3}	Q_{4}	Q_{3}
Q_{4}	Q_{3}	Q_{5}
${ }^{*} \mathrm{Q}_{5}$	Q_{2}	Q_{5}

UNIT - II
3 a . Obtain the regular expression for the following finite automata using Kleen's theorem.

b. Obtain the regular expression for the following :
i) Strings of 0's and 1's with no two consecutive Zero's
ii) Strings a 's and b 's whose length is either even or multiple of 3 or both
c. Prove that if R is a regular expression, then there exists a finite automation that accepts $L(R)$.

4 a . State and prove Pumping Lemma for regular language.
b. Show that $\mathrm{L}=\left\{w w^{R} \mid w \in\{0+1\}^{*}\right\}$ is not regular.
c. Show that regular languages are closed under compliment and difference.

UNIT - III

5 a . Define CFG. Obtain the CFG for the following languages :
i) $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
ii) $L=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$
b. Obtain the leftmost and rightmost derivation for the string 'abababa' from the grammar

$$
\mathrm{S} \rightarrow \mathrm{SbS} \mid \mathrm{a}
$$

c. Define the term ambiguity and show that $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{a}$ is ambiguous.
d. Show that CFL are not closed under intersection.

6 a. Eliminate epsilon unit and useless production from the following grammar :

$$
\mathrm{S} \rightarrow \mathrm{ABC} \mid \mathrm{BaB}
$$

$\mathrm{A} \rightarrow \mathrm{aA}|\mathrm{BaC}| \mathrm{aaa}$
$\mathrm{B} \rightarrow \mathrm{bBb}|\mathrm{a}| \mathrm{D}$
$\mathrm{C} \rightarrow \mathrm{CA} \mid \mathrm{AC}$
D $\rightarrow \mathrm{C}$
b. Define CNF and GNF. Convert the following grammar into CNF :
$\mathrm{S} \rightarrow \mathrm{aBa}$ |abba
$\mathrm{A} \rightarrow \mathrm{ab} \mid \mathrm{AA}$
B $\rightarrow \mathrm{aB} \mid \mathrm{a}$

UNIT - IV

7 a. Construct a PDA for the language $\mathrm{L}=\left\{w w^{R} \mid w \in\{a, b\}^{*}\right\}$ and show the string acceptance. 10
b. Construct a PDA for the language $L=\left\{a^{n} b^{2 n} \mid \mathrm{n} \geq 1\right\}$ and show the string acceptance. 10

8 a. Convert the following grammar:

$$
\begin{align*}
& \mathrm{S} \rightarrow \mathrm{aSa} \mid \mathrm{aa} \tag{10}\\
& \mathrm{~S} \rightarrow \mathrm{bSb} \mid \mathrm{bb}
\end{align*}
$$

to PDA that accepts the same language by empty stack.
b. Check whether the PDA for the language $L=\left\{w \subset w^{R} \mid w \in\{a, b\}^{*}\right\}$ is deterministic or not.

UNIT - V

9 a . Design a Turing machine to accept the language :
$L=\left\{n_{a}(w)=n_{b}(w)\right.$, where $\left.w \in\{a, b\}^{*}\right\}$.
b. Design a Turing machine to accept the language
$L=\{w \mid w$ is a palindrome, where $w \in\{a, b\}\}$.
10. Write a short note on the following :
i) Multi tape Turing machine
ii) Post correspondence problem
iii) Problem of decidable
iv) Halting problem

