-					
U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Computer Science and Engineering Semester End Examination; May/June - 2018 Theory of Computation

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Design a DFA for the following languages:

i)
$$L = \{ w(ab + ba) \mid w \in \{a, b\}^* \}$$
 ii) $L = \{ w \mid |w| \mod 5 \neq 0 \text{ where } w \in \{a, b\}^* \}$

b. Convert the below NFA into its equivalent DFA.

- c. Mention the difference between DFA, NFA and \in -NFA.
- 2 a. Convert the \in -NFA to equivalent DFA.

b. Define distinguishable and indistinguishable pairs: Minimize the following DFA.

	0	1
\rightarrow Q ₁	Q_2	Q_3
Q_2	Q_3	Q_5
Q_3	Q_4	Q_3
Q_4	Q_3	Q_5
* Q ₅	Q_2	Q_5

UNIT - II

3 a. Obtain the regular expression for the following finite automata using Kleen's theorem.

- b. Obtain the regular expression for the following:
 - i) Strings of 0's and 1's with no two consecutive Zero's
 - ii) Strings a's and b's whose length is either even or multiple of 3 or both
- c. Prove that if R is a regular expression, then there exists a finite automation that accepts L(R).
- 4 a. State and prove Pumping Lemma for regular language.
- b. Show that $L = \{ww^R \mid w \in \{0+1\}^*\}$ is not regular.
- c. Show that regular languages are closed under compliment and difference.

6

4

10

7

3

10

10

6

8

6

UNIT - III

5 a. Define CFG. Obtain the CFG for the following languages:

i) $L = \{a^n b^n \mid n \ge 0\}$ ii) $L = \{ww^R \mid w \in \{a, b\}^*\}$

5

b. Obtain the leftmost and rightmost derivation for the string 'abababa' from the grammar

 $S \mathop{\to}\! SbS \mid \, a$

5

c. Define the term ambiguity and show that $E \rightarrow E + E \mid E * E \mid a$ is ambiguous.

5

d. Show that CFL are not closed under intersection.

5

6 a. Eliminate epsilon unit and useless production from the following grammar:

 $S \to ABC \mid BaB$

 $A \rightarrow aA \mid BaC \mid aaa$

10

 $B \rightarrow bBb \mid a \mid D$

 $C \to CA \mid AC$

 $D \rightarrow C$

b. Define CNF and GNF. Convert the following grammar into CNF:

 $S \rightarrow aBa \mid abba$

10

 $A \rightarrow ab \mid AA$

 $B \ \to aB \mid a$

UNIT - IV

7 a. Construct a PDA for the language $L=\{ww^R \mid w \in \{a,b\}^*\}$ and show the string acceptance.

10

b. Construct a PDA for the language $L = \{a^n b^{2n} \mid n \ge 1\}$ and show the string acceptance.

10

8 a. Convert the following grammar:

 $S \rightarrow aSa \mid aa$

 $S \rightarrow bSb \mid bb$

10

to PDA that accepts the same language by empty stack.

b. Check whether the PDA for the language $L = \{ w \subset w^R \mid w \in \{a,b\}^* \}$ is deterministic or not.

10

UNIT - V

9 a. Design a Turing machine to accept the language:

 $L = \{n_a(w) = n_b(w), \text{ where } w \in \{a, b\}^*\}.$

10

b. Design a Turing machine to accept the language

 $L = \{ w \mid w \text{ is a palindrome, where } w \in \{a, b\} \}.$

10

10. Write a short note on the following:

i) Multi tape Turing machine

ii) Post correspondence problem

20

iii) Problem of decidable

iv) Halting problem