U.S.N

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Computer Science and Engineering Semester End Examination; May/June - 2018 Microprocessor

Ti	me: 3 hrs Max. Marks: 100	
No	te: Answer FIVE full questions, selecting ONE full question from each unit.	
1 a.	UNIT - I Explain with figure the flag register of 8086.	
	Interpret the addressing mode in the following instructions and compute physical address.	
	Given: DS = 1000 h ; bx = 3459h ; SS = 5CF9h ; BP = $C396 \text{h}$; Si = 1004h	
	i) mov ax, [BP] ii) add cl, [bx +Si] iii) add 5167h[bx+Si], al	
c.	Explain the working of instruction queue of 8086.	
2 a.	Define addressing mode. Explain any two memory related data addressing mode and any two branch related addressing mode.	
b.	Construct machine code for the following:	
	i) add ax, cx ii) add 79h[bx], cl iii) add dx,[bx+Si]	
c.	Explain special one bit indicators presents in the instruction format.	
	UNIT - II	
3 a.	Apply bubble sorting technique to sort n bytes of data in descending order using assembly	
	level programming.	
b.	Explain the following instructions along with an example, allowed addressing mode and	
	flags that are affected after the execution of an instructions:	
	i) ADC ii) SAR iii) loop iv) AND	
c.	Data set of 15 readings are stored at consecutive location starting from 9000h. Develop a	
	program to check whether readings are +ve or -ve. Neglect all -ve readings and add all +ve	
	readings.	
4 a.	Explain the following instructions with an example:	
	i) CBW ii) CLI iii) EQU iv) SHR	
b.	Develop a program to convert decimal number to binary.	
c.	Write a sequence of instructions to perform the following on the content of any 16 bit register	
	i) Clear 3 rd and 5 th bit and set10 th bit	
	ii) To set the trap flag	
	iii) Set bit 0, 2 bits and change 6 th and 11 th bits	

P13CS46Page No... 2

UNIT - III

5 a.	Discuss the reasons for breaking a program into small parts.	4
b.	Explain public and extrn directive along with an example.	6
c.	Write a program to find ⁿ c _r using recursive procedures.	10
6 a.	Distinguish between procedure and macro.	5
b.	Write a macro to add two numbers. Using this write a program to add n bytes of data.	8
c.	Define interrupt. Explain the sequence of instructions to be executed at the time of interrupt,	7
	also find address into IVT after the execution of the INT 40h Instruction.	
	UNIT - IV	
7 a.	Explain the following instruction:	6
	i) CMPS ii) SCAS iii) LODS	6
b.	Develop a program to accept a string from keyboard and check whether it is palindrome or	10
	not. If yes store ff else store 00 at location result.	1(
c.	With an example explain XLAT instructions.	4
8 a.	Explain in and out instruction format.	5
b.	Explain with figure priority management hardware.	10
c.	Explain the sequence of steps occurs during block input byte transfer.	5
	UNIT - V	
9 a.	Explain the functions of following pins :	1.0
	i) HOLD ii) ALE iii) NMI iv) $AD_0 - AD_{15}$ v) DI / \overline{R}	10
b.	Explain with figure maximum mode operation of 8086 processor.	10
10 a.	Explain interrupt system based on single 8259A.	10
b.	Design an interface between 8086 CPU and two chips of 16k x 8 EPROM and two chips of	
	32k x 8 RAM. Select the starting address of EPROM at F8000h and RAM address must start	10

* * * *

at 00000h