U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Computer Science and Engineering Semester End Examination; May/June - 2018 **Compiler Design**

Time: 3 hrs		Max. Marks: 100
Notes Assessed EIVE Call assessing	-1in- ONE C.IIi C.	1:4

Note: Answer **FIVE** full questions, selecting **ONE** full question from each unit.

UNIT - I 1 a. With a neat diagram, explain the phases of a compiler. Show the translation made by each of 12 the phases for the statement a = b + c * 10 where a, b and c are real. b. Explain the input buffering strategy used in lexical analysis phase. 8 2 a. With neat diagram, explain the role of lexical analyzer. 6 b. Define the term Token, Pattern and Lexeme. Find the same for the following program 8 fragment: printf("Total = %d\n average = %f\n", score, area); c. Define regular expression and write transition diagram to recognize the tokens given below: 6 i) Identifier ii) Unsigned number **UNIT-II** 3 a. Define Left Recession and Left Factoring. Give the algorithm used for eliminating Left 8 Recursion. b. Construct the predictive parsing table for the given grammar and show the parsing steps for the string "uvuvx2" $S \rightarrow uB2$ 12 $B \rightarrow Bv / vuE / vxuE / ByE$ $E \rightarrow v / vx$ 4 a. Briefly explain the problem associated with Top Down Parsing. 6 b. Explain Non-recessive Predictive Parsing algorithm. 6 c. Compute First() and Follow() symbols for the following grammar and check whether grammar is LL(1): $S \rightarrow iEtSS'/a$ 8 $S' \rightarrow eS/\varepsilon$

UNIT - III

- 5 a. Explain the working of shift reduce parser and also conflicts that may arise during shift reduce parsing with an example.
 - b. Write LR parsing algorithm.

 $E \rightarrow b$

6

6

P	13CS63 Page No 2	
c.	Construct LR(0) item for given grammar : $A \rightarrow (A) / a$	8
6 a.	Write the algorithm for constructing set of LR(1) items.	8
b.	Construct LALR parsing table for the following grammar:	
	$S \to CC$	12
	$C \rightarrow cC/d$	
	UNIT - IV	
7 a.	Define the following terms with an example :	
	i) Syntax directed definition	
	ii) Inherited attribute	10
	iii) Synthesized attribute	
	iv) Annotated parse tree	
b.	b. Give the syntax directed definition to process a simple variable declaration in C and draw	
	dependency graph for $int id_1$, id_2 , id_3 .	10
8 a.	3 a. Explain in detail different dynamic storage allocation strategies.	
b.	b. Describe an activation record. Explain the purpose of each item in an activation record with	
	an example.	10
	UNIT - V	
9 a.	9 a. What is DAG? Write DAG for the expression :	
	((x+y)-((x+y)*(x-y)))+((x+y)*(x-y).	
b.	Name the different types of representation of 3-address code and translate the given	
	arithmetic expression into each type.	6
	a-b*c+d-a+b	
c.	Describe the method of generating intermediate code for the branching statement (if/if-else).	10
10 a.	Briefly explain main issues in code generation.	10
b.	Explain the code generation algorithm and generate code for the following expression : $x = (a - b) + (a + c)$.	10