U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; May / June - 2018 Microwave Devices and Integrated Circuit's

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

N	ote: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I				
1 a.	What are standing waves? Sketch the standing wave pattern for lossy and lossless line. Write	6			
	the equation for V_{max} and V_{min} of standing wave.				
b.	. Write the schematic circuit of transmission line and derive the transmission line equation in				
	terms of propagation constant.	8			
c.	A microwave transmission line is terminated with load impedance $Z_l = -40.1 + j \ 75.3 \ \Omega$. The				
	reflection coefficient observed is 0.64∠100°. Compute;	6			
	i) Transmission coefficient ii) Characteristic impedance iii) SWR				
2 a.	List the applications of Smith chart.	5			
b.	Derive the equation for line impedance in terms of exponential and hyperbolic functions at any	8			
	point from sending end.	8			
c.	A transmission line with characteristic impedance of 400 Ω is connected to a load of				
	$200 + j$ 300 Ω operating at 800 MHz. Find the location and length of single stub nearest to the	7			
	load to produce impedance match.				
	UNIT - II				
3 a.	Discuss the propagation of TE waves in rectangular wave guide with related equations and	12			
	also explain its dominant mode of propagation.	12			
b.	With a neat sketch, describe the construction and working of Faraday rotation isolator.	8			
4 a.	List the differences between travelling wave tube and klystron.	4			
b.	Explain the amplification process of helix travelling wave tube along with neat diagram.	10			
c.	Describe the operation of two cavity klystron amplifier with neat diagram.	6			
UNIT - III					
5 a.	Explain the properties of S-parameters for junction of ports having common characteristic	10			
	impedance.	10			
b.	Explain the structure of three types of co-axial cable along with diagram.	6			
c.	List the advantages of [S] over [Z] or [Y].	4			

P	P13EC63 Page No 2	
6 a.	Describe the working of precision type variable attenuator along with diagram and attenuation	8
	equation.	0
b.	Discuss the phase shifting of microwave using non-reciprocal phase shifter.	6
c.	Explain the application of Magic-T as balanced mixer with neat diagram.	6
	UNIT - IV	
7 a.	Explain the construction and operation of Gunn diode.	6
b.	Discuss the operation of IMPATT diode and derive equation for power output and efficiency.	8
c.	Describe the fundamental concepts of RWH theory.	6
8 a.	Explain the physical structure and principle of operation of TRAPATT diodes.	8
b.	Discuss the construction and operating principle of varactor diodes and how it can be used as	6
	multiplier circuit?	6
c.	List the differences between tunnel diode and normal p - n junction diode.	6
	UNIT - V	
9 a.	Explain the dielectric losses and radiation losses in micro strip lines along with equations.	10
b.	Write note on:	
	i) Coplanar strip line	10
	ii) Shielded strip line	
10a.	Discuss the fabrication steps for thick-film deposition method of MIC.	8
b.	Write note on sandwich capacitor.	6
c.	Explain the Etch back technique of circuit accomplishment in MIC.	6

* * * *