P13EC42

Page No... 1

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; May/June - 2018 Analog Communication Theory

Time: 3 hrs Max. Marks: 100

Note	e: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I	
1 a.	Find the Hilbert transform of the following:	6
	i) $x(t) = \cos(2\Pi f t) + \sin(2\Pi f t)$ ii) $x(t) = e^{-j2\Pi f t}$	6
b.	For the AM signal, $S(t) = m(t) \cos(2\Pi f_c t + \phi)$	
	Find the following:	10
	i) Pre-envelop ii) Complex envelop	10
	iii) Natural envelop iv) In-phase and quadrature components	
c.	Write the spectrum of standard AM wave and explain.	4
2 a.	The output of AM transmitter is given by, $400[1+0.4cos(6280t)] cos(3.14x10^7t)$. This	
	voltage is fed to a load of $600~\Omega$ resistance. Determine;	10
	i) Carrier frequency ii) Modulating Frequency iii) Carrier Power iv) Total Power	
b.	Describe the demodulation of AM wave using square law detector.	10
	UNIT - II	
3 a.	A message signal $m(t)$ is applied to a ring modulator. The amplitude spectrum of $m(t)$ has a	
	value $M(0)$ at zero frequency. Draw the spectrum of modulated signal of ring modulator	10
	output. Also find the ring modulator output at $f = \pm f_c$, $\pm 3f_c$, $\pm 5f_c$, where f_c is the	10
	fundamental frequency of the square wave carrier $C(t)$.	
b.	Consider a composite wave that is obtained by adding a non-coherent carrier	
	$A_c \cos \left[2\pi f_c t + \phi\right]$ to a DSBSC wave $m(t) \cos[2\pi f_c t]$. The composite wave is then applied to	
	an envelope detector. Evaluate the detector output for,	10
	$\phi = 0, \left m(t) \right << \frac{A_c}{2}.$	
4 a.	Analyze the demodulation of SSB-SC wave using coherent detection. Also describe the	1.0
	coherent detector with phase error.	10
b.	With neat diagram, explain FDM.	10
	UNIT - III	
5 a.	Describe the phase discrimination method of generating VSB-SC wave. Also explain the	12
	demodulation of VSB-SC wave using envelope detection.	

b. Write the block diagram of multiplexer in TV transmitter. Explain.

8

6 a.	Derive the equation for narrow-band FM wave. Also draw the Phasor diagram and	
o u.	spectrum of NBFM wave.	10
b.	A 100 MHz carrier has a peak voltage of 5 V. The carrier is frequency modulated by a	
υ.	sinusoidal modulating waveform of frequency 2 kHz such that the frequency deviation is	6
		U
	75 kHz. Write the time domain expression for the modulated carrier wave form.	
c.	Describe frequency deviation.	4
	UNIT - IV	
7 a.	An angle modulated signal is represented by,	
	$S(t) = 10 \cos[2\pi 10^6 t + 5 \sin 2000\pi t + 10 \sin 3000\pi t] \text{ V. Find};$	
	i) The power in the modulated signal ii) The frequency deviation Δf	10
	iii) The deviation ratio iv) The phase deviation $\Delta \theta$	
	v) The transmission BW	
b.	Describe the generation of WBFM wave using direct method.	10
8 a.	Analyze the demodulation of FM wave using PLL.	12
b.	Describe non-linear effect in FM Systems.	8
	UNIT - V	
9 a.	Describe the following types of noise:	
	i) Extraterrestrial noise	10
	ii) Shot noise	10
	iii) Johnson noise	
b.	When the noise temperature at the input to a certain amplifier changes from T_0 to $2T_0$ and	
	the output noise power increases by one third. Find noise figure F and the equivalent noise	10
	temperature T_e of the amplifier.	
10 a.	Draw the block diagram of SSB-SC receiver and show that it has unity FOM.	12
b.	Describe threshold effect in FM	8