

5 a. Derive an expression for magnetic torque and magnetic dipole moment for a rectangular planar coil carrying current I placed in XY plane and parallel to the magnetic field.

6

P13	P13EC46 Page No 2	
b.	In region 1 at $Z < 0$ has $\mu_{r1} = 1.5$, region 2 at $Z > 0$ has $\mu_{r2} = 1$. The flux density	
	$\vec{B} = 1.2 \hat{a}_x + 0.8 \hat{a}_y + 0.4 \hat{a}_z$. Tesla is incident at boundary from region 1. Calculate \vec{B}_2 .	8
c.	Derive the equation for self inductance of co-axial cable.	6
6 a.	List Maxwell's equation both in integral form and point form.	8
b.	Explain the concept of displacement current density. A lossy dielectric has $\mu = 4\pi \times 10^{-9} H_m$	
	and $\in =\frac{10^{-8}}{36\pi} F/m$, $\sigma = 2 \times 10^{-8} \text{C}/m$, at what frequency will the conduction current density	7
	and displacement current densities have equal magnitude.	
c.	Write note on retarded potentials.	5
	UNIT - IV	
7 a.	Discuss the wave propagation in dielectric with related equations.	8
b.	An interface is formed by two dielectrics with $\eta_1 = 100 \ \Omega$, $\eta_2 = 300 \ \Omega$, $E_i = 100 \ V/m$.	6
	Calculate: (i) Reflection coefficient (ii) E_r , H_i , H_r (iii) Power in region 1.	0
c.	Explain different types of wave polarization.	6
8 a.	Define the terms effective aperture and directivity of an antenna. Determine the effective	10
	aperture and directivity of short dipole antenna.	10
b.	A receiving antenna kept at a distance 150 kmts from the transmitting antenna receives power	
	of 500 kW at frequency of 5 MHz. The gain of transmitting antenna is 50 and gain of	6
	receiving antenna is 25. Calculate the transmitted power.	
c.	Write note on antenna field zones.	4
UNIT - V		
9 a.	Explain earth's behaviour at different frequencies. Also sketch the variation of attenuation	6
	factor with numerical distance.	0
b.	Derive an equation for power radiated by a current element.	8
c.	Discuss the space wave propagation with related equations.	6
10 a.	Discuss the effects of curved nature of earth.	6
b.	Derive the equation for relative permittivity and refractive index of ionosphere.	8
c.	Explain the terms:	
	(i) MUF	6
	(ii) Critical frequency	0

(iii) Virtual height

* * * *