b. Discuss the operation of cascade current mirror. UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10		
(An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Electronics and Communication Engineering Semester End Examination; May/June - 2018 Analog CMOS VLSI Design Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - 1 1 a. Derive an expression for I _D , R ₀₁ v of a MOS transistor in a triode region. 8 b. Discuss the second order effects : 8 i) Body effect ii) Sub threshold conduction 8 c. Explain the MOS device capacitance. 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A _v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Expla		
Sixth Semester, B.E Electronics and Communication Engineering Semester End Examination; May/June - 2018 Analog CMOS VLSI Design Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - 1 Max. Marks: 100 1 a. Derive an expression for I _D , R _{01V} of a MOS transistor in a triode region. 8 b. Discuss the second order effects : i) Body effect 8 i) Body effect ii) Sub threshold conduction 8 c. Explain the MOS device capacitance. 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A_v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A_v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the co		
Analog CMOS VLSI Design Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - 1 Max. Marks: 100 1 a. Derive an expression for I _D , R _{01V} of a MOS transistor in a triode region. 8 b. Discuss the second order effects : 8 i) Body effect ii) Sub threshold conduction 8 c. Explain the MOS device capacitance. 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A _v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 6 c. Write a short note on Gilbert's cell. 6 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - II 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8	Sixth Semester, B.E Electronics and Communication Engineering	
Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - 1 1 a. Derive an expression for I_D , R_{01V} of a MOS transistor in a triode region. 8 b. Discuss the second order effects : 8 i) Body effect ii) Sub threshold conduction c. Explain the MOS device capacitance. 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A_v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 6 c. Write a short note on Gilbert's cell. 6 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A_v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G_m biasing. 6		
UNIT - I 1 a. Derive an expression for I_D , R_{01V} of a MOS transistor in a triode region. 8 b. Discuss the second order effects : 8 i) Body effect ii) Sub threshold conduction 8 c. Explain the MOS device capacitance. 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A_v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A_v . 10 b. Discuss the operation of cascade current mirror. 10 b. Discuss the operation of cascade current mirror. 10 c. Write a short note on Gilbert's cell. 8 c. Discuss the operation of cascade current mirror. 10 b. Discuss the operation of cascade current mirror. 10		
1 a. Derive an expression for I _D , R _{01V} of a MOS transistor in a triode region. 8 b. Discuss the second order effects : 8 i) Body effect ii) Sub threshold conduction 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A _v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror. 10 DINT - II 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 Discuss the operation of cascade current mirror. 10 DINT - II 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 Discuss the operation of cascade current mirror. 10 DINT - III 5 a. Derive an exp	Note: Answer FIVE full questions, selecting ONE full question from each unit.	
b. Discuss the second order effects : 8 i) Body effect ii) Sub threshold conduction c. Explain the MOS device capacitance. 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A _v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of positive temperature coefficient voltage along with circuit. 8 LINIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the pe	UNIT - I	
i) Body effect ii) Sub threshold conduction 8 c. Explain the MOS device capacitance. 4 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A _v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	1 a. Derive an expression for I_D , R_{01V} of a MOS transistor in a triode region.	8
 i) Body effect ii) Sub threshold conduction c. Explain the MOS device capacitance. 2 a. Along with schematic and input/output characteristics, explain the operation of source follower. b. Derive an expression for voltage gain A_v by considering common source stage with resistance load. c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. b. Derive the expression for CMRR of a differential amplifier. c. Write a short note on Gilbert's cell. 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A_v. b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 Explain the constant G_m biasing. c. Discuss in brief the speed and noise issues in Band gap references. 6 a. Analyse the performance of discrete-time integrator and obtain the response for the constant 	b. Discuss the second order effects :	8
2 a. Along with schematic and input/output characteristics, explain the operation of source follower. 6 b. Derive an expression for voltage gain A _v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	i) Body effect ii) Sub threshold conduction	0
b. Derive an expression for voltage gain A _v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	c. Explain the MOS device capacitance.	4
follower. b. Derive an expression for voltage gain A_v by considering common source stage with resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A_v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G_m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant To 10	2 a. Along with schematic and input/output characteristics, explain the operation of source	6
resistance load. 6 c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	follower.	0
resistance load. c. Explain the working of cascade stage along with schematic and input/output characteristics. 8 UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	b. Derive an expression for voltage gain A_{ν} by considering common source stage with	6
UNIT - II 3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	resistance load.	0
3 a. Explain the operation of basic differential pair with a relevant diagram and input/output characteristics. 8 b. Derive the expression for CMRR of a differential amplifier. 6 c. Write a short note on Gilbert's cell. 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of discrete-time integrator and obtain the response for the constant 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	c. Explain the working of cascade stage along with schematic and input/output characteristics.	8
a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 6 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10 10	UNIT - II	
 b. Derive the expression for CMRR of a differential amplifier. c. Write a short note on Gilbert's cell. 4 a. For a differential amplifier with current mirror as the load, obtain the expression for A_v. b. Discuss the operation of cascade current mirror. UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G_m biasing. c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. b. Analyse the performance of discrete-time integrator and obtain the response for the constant 		8
c. Write a short note on Gilbert's cell.64 a. For a differential amplifier with current mirror as the load, obtain the expression for A_v .10b. Discuss the operation of cascade current mirror.10UNIT - III5 a. Derive an expression for positive temperature coefficient voltage along with circuit.b. Explain the constant G_m biasing.6c. Discuss in brief the speed and noise issues in Band gap references.66 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode.10b. Analyse the performance of discrete-time integrator and obtain the response for the constant1010		6
4 a. For a differential amplifier with current mirror as the load, obtain the expression for A _v . 10 b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10		
b. Discuss the operation of cascade current mirror. 10 UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10		
UNIT - III 5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	-	
5 a. Derive an expression for positive temperature coefficient voltage along with circuit. 8 b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10	-	10
b. Explain the constant G _m biasing. 6 c. Discuss in brief the speed and noise issues in Band gap references. 6 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10		8
c. Discuss in brief the speed and noise issues in Band gap references.66 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode.10b. Analyse the performance of discrete-time integrator and obtain the response for the constant10		
 6 a. Analyse the performance of unit gain sampler in sampling mode and in amplification mode. 10 b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10 		
b. Analyse the performance of discrete-time integrator and obtain the response for the constant 10		
10		
	input voltage.	10
UNIT - IV		

7 a. For a three stage ring oscillator, obtain the expression for frequency of oscillations and minimum gain for sustained oscillations. Plot the poles for $0 < A_0 < 2$, $A_0 = 2$ and $A_0 > 2$. 10

b. For a Colpitts oscillator obtain an expression for oscillations and minimum gain for sustained 10 oscillations.

P13EC61 Page No 2		
8 a. Discuss two methods to generate negative resistance that can be used in oscillator circuit.	10	
b. What is VCO? Briefly explain the important performance parameters of VCO.	10	
UNIT - V		
9 a. With the help of a block diagram, explain the working of a simple PLL. Draw and explain	10	
the waveform in PLL under locked conditions.		
b. Explain the working of a phase/frequency detector with relevant diagrams.	10	
10 a. Explain the process of frequency multiplication and frequency synthesis.	10	
b. Discuss the skew and jitter reduction of PLL system.	10	

* * * *