

- field vector, E = 3ax + 4ay 12az; V/m in cube Z(z > 0), the material of which has a E_r 7 of 4. Find the volume of D in cube 1, the material of which has a E_r = 2.
- b. Derive the expression for capacitance of two concentric spherical conductors of inner and outer radii *a* and *b*, respectively.

7

P13	Page No 2	
c.	An air condenser consisting of two parallel square plates of 50 cm side is charged to a	
	voltage of 200 V with plate separation of 1mm. Calculate the work done in widening the	6
	plate separation to 1cm. Assume perfect insulation.	
6 a.	Starting from fundamental derive Laplace and Poisson's equation.	7
b.	Determine whether or not the following potential fields set's by Laplace equation :	7
	i) $V = \rho \cos \phi + z$ ii) $V = r \cos \theta + \phi$	7
c.	State and prove uniqueness theorem.	6
UNIT - IV		
7 a.	State and Prove Biot-Savart's law.	7
b.	Using Biot-Savart's law, determine magnetic field intensity at any point along the axis of a	7
	circular current loop.	7
c.	A circuit carrying a direct current of 5 A from a regular hexagon inscribed in a circular of	
	radius 1 m. Calculate the magnetic flux density at the centre of the hexagon. Assume the	6
	medium to be free space.	
8 a.	Explain the concept of scalar and vector magnetic potential.	6
b.	Using Ampere's circuital law, find the magnetic field at any radial distance for the case of	7
	a solid cylindrical conductor of radius 'a'.	
c.	The magnetic field, $H = 2\rho^2(z + 1)\sin^2\phi a_{\phi}$, verify strokes theorem for the portion of a	7
	cylindrical surface defined by $\rho = 2$, $\frac{\pi}{4} < \phi < \frac{\pi}{2}$, $1 < z < 1.5$ and for its perimeter.	7
UNIT - V		
9 a.	Starting from Faraday's law of electromagnetic induction, prove that $\nabla XE = -\frac{\theta B}{\theta t}$.	7
b.	Derive the expression for motional emf in a conductor.	7
c.	A copper disc of 15 cms dia is located at the centre of a long solenoid of length 1 meter and	
	having a dia of 30 cms. The solenoid is wound with 1200 turns. The disc is arranged to	
	rotate about an axis coincident with the axis of solenoid at 1800 rpm. Brushes are provided	6
	at the centre and at the edge of the disc. If the current in the solenoid is 2 A, What is the	
	emf between the brushes?	
10 a.	Derive the expression for force per unit length between two parallel current carrying	6
	conductors.	0
b.	Derive the expression for inductance of toroid.	6
c.	Two homogeneous, linear, isotrophic material have interface at $x = 0$ in which there is a	
	surface current, $k = 200 a_z$; A/m. For $x < 0$, $\mu_{r1} = 2$ and $H_1 = 150 a_x + 400 a_y + 250 a_z$;	8
	AT/m. Find;	5

 $i) \, H_z \qquad ii) \, B_R \qquad iii) \, \alpha_1 \qquad iv) \, \alpha_2$

* * * *