
U.S.N

Time: 3 hrs

Max. Marks: 100

6

6

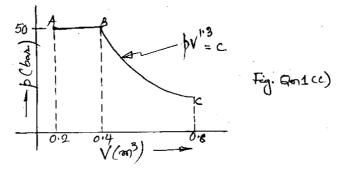
8

9

3

8

Page No... 1


Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Define the following representing the same on a PV diagram :

i) Reversible process ii) Irreversible Process iii) Reversible cycle

- b. What is the thermodynamic definition of work? Derive an expression for PDV work for a process in which the pressure and volume are related by PV = constant. Represent this process on a PV diagram.
- c. Determine the total work done by MJ by a gas system which is undergoing an expansion process as shown in Fig. Q1(C).

2 a. Differentiate between the following :

i) Process and Path ii) Path and Point functions

- iii) Microscopic and Microscopic view points
- b. List the common points about work and heat transfer.
- c. A certain fluid at 10 bar is contained in a cylinder behind a piston, the initial volume being 0.05 m³. Calculate the workdone by the fluid when it expands reversibly according to law $P = \left(\frac{A}{V^2}\right) \left(\frac{B}{V}\right)$ to final volume of 0.1 m³, and a final pressure of 1 bar where A and B are

constants.

UNIT - II

3 a. Write the first law of thermodynamics as applied to a cycle, process. Explain the terms.
4
b. Show that entropy is a property.
c. A refrigerator that operates on a carnot cycle removes 540 kJ of heat per minute from a low temperature reservoir at -12°C and transfers heat to a higher temperature reservoir at 40°C.
8 Determine the COP of the refrigerator and the power required by it in kJ/min and kW.

]	P13IP43 Page No 2		
4 a.	Define the following and write mathematical expression wherever applicable :	6	
	i) COP of a heat pump ii) Clausius inequality iii) Carrots theorem	6	
b.	Write the first law of thermodynamics as applied to a flow process and explain the terms.	4	
c.	A turbine operating under stready flow conditions receives steam at the following conditions:		
	Pressure 13.8 bar, specific volume 0.143 m ³ /kg, internal energy 2590 kJ/kg, velocity 30 m/s.		
	The state of steam leaving the turbine is: Pressure 0.35 bar, specific volume 4.37 m^3/kg , internal	10	
	energy 2360 kJ/kg, velocity 90 m/s. Heat is lost to the surrounding at the rate of 0.25 kJ/s. If the		
	rate of steam flow is 0.38 kg/s, what is the power developed by the turbine?		
UNIT - III			
5 a.	Representing a typical vapour dome on a T-S plane for a pure substance, show the following on		
	the same : i) Any two isobarsii) Any two constant quality lines	8	
	iii) Compressed liquid region iv) Superheated vapour region		
	With usual notations, prove that $Cp-C_v = R$.	4	
c.	A vessel contains 3 kg of water at 200°C. If the volume of the vessel is 0.3 m ³ . Determine;	8	
	i) The pressure ii) Quality iii) Specific enthalpy of water vapour in the vessel	0	
6 a.	Define: i) Pure substance ii) Dryness fraction iii) Triple Point.	6	
b.	For an ideal gas extending a reversible adiabatic process, show that the temperature and volume	6	
	are related by the equations $TV^{\gamma-1} = C$.	0	
c.	10 kg water at 450°C is heated at constant pressure of 10 bars until it becomes super heated	8	
	vapour at 300°C. Find the change in volume, enthalpy, internal energy and entropy.	0	
	UNIT - IV		
7 a.	Represent a regenerative Rankine cycle with a single feed heater on a T-S diagram and explain	0	
	briefly. Assume the steam is superheated conditions at the entry to the turbine.	8	
b.	Define the following as applied to gas power cycle :	6	
	i) Air standard efficiency ii) Mean effective pressure	6	
c.	Define 'Mean temperature of heat addition' representing to the same on a simple Rankine cycle		
	on a T-S plane. Show that for a given T_2 , Rankine cycle efficiency depends on the mean	6	
	temperature of heat addition.		
8 a.	Represent: i) Otto cycle		
	ii) Diesel cycle on PV diagram and name the various processes; also write the	8	
	expression for air standard efficiency of the same.		
b.	For the same compression ratio and heat rejections, which cycle is more efficient: Otto, diesel	6	
	or Dual? Substantiate your answer with the help of a PV diagram.	0	
c.	An engine 200 mm bore and 300 mm stroke works on the cycle. If the clearance volume is	6	
	0.0016 m^3 . Find the air standard efficiency of the engine.	U	
	Contd 3		

P13IP43

UNIT - V

9 a.	With usual notations, derive an expression for air standard efficiency of a Brayton cycle	8
	representing the same on PV and TS diagrams.	0
b.	Represent the indicator diagrams for a single stage, single acting reciprocating air compressor	6
	with clearance. Write the expression for the work done on air and explain the terms.	
c.	Represent on a T-S diagram, ideal regenerative gas turbine cycle with two stage compression	6
	and reheat. Assume the inter cooling and reheating processes are ideal.	0
10 a.	Which of the compression process needs minimum work input and which the maximum?	6
	Support your answer with the help of the PV diagram.	
b.	Draw a PV diagram representing a two stage compression process showing the saving in work.	6
	Also indicate the isothermal line.	
c.	An air compressor compresses airs from 0.98 bar and 20°C to 9.8 bar according to the law	
	$Pv^{1.2} = C$ and delivers it to a receiver at constant pressure.	
	Compute;	8
	i) The temperature of air at the end of compression	
	ii) Work required during compression of 1 kg of air	

* * * *