
- represented as a binary number. Only the strings representing zero modulo five should be accepted. For example 0000, 0101, 1010, 1111 etc should be accepted.
- c. Design the DFA for the following languages over $\sum \{a, b\}$

i)
$$L = \{wbab | w \in \{a, b\}^*\}$$
 ii) $L = \{w : n_a(w) \ge 1, n_b(w) = 2\}$

- 2 a. Explain the applications of Finite Automata.
 - Convert the following NFA shown in Fig. 2(b) to its equivalent DFA using lazy evaluation b. method.

Construct a DFA from the NFA shown in Fig. 2(c) с.

UNIT - II

3 a. Write the regular expression for the following languages :

i) Strings of a's and b's of length ≤ 10

- ii) Strings of 0's and 1's are having no two consecutive zero's
- iii) Strings of a's and b's with two or more letters but beginning and ending with same letter

iv)
$$L = \{a^{2n} b^{2m} | n \ge 0, m \ge 0\}$$

Prove that there exists a Finite Automata to accept the language L(R) corresponding to the regular b. expression.

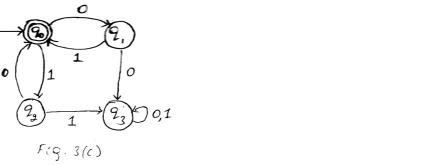
8

6

6

8

8


6

P13IS43

Page No... 2

6

c. Obtain a regular expression for the Finite Automata shown in Fig.3(c) using state elimination method.

4 a. List and explain the applications of regular expressions. 4 Shown that the following language is not regular : b. 10 $L = \{ w w^{R} \mid w \in (0+1)^{*} \}$ $L = \{O^n \mid n \text{ is prime}\}$ Show that if L is a regular language, then the complement of L denoted by \overline{L} is also regular. 6 c. UNIT - III Explain the Chomsky hierarchy with an example. 12 5 a. Write a grammar to generate an arithmetic expression using the operators +, -, *, / and ^. An b. identifier can start with any of the letters from {a, b, c} and can be followed by zero or more 4 symbols from $\{a, b, c\}$. Is the following grammar ambiguous? c. 4 $S \rightarrow aS \mid X$ $X \to aX \mid a$ 6 a. Eliminate the useless symbols in the grammar: $S \rightarrow aA \mid bB$ $A \rightarrow aA \mid a$ 8 $B \rightarrow bB$ $D \rightarrow ab \mid Ea$ $E \rightarrow aC \mid d$ b. Convert the following grammar into GNF: $S \rightarrow AB1 \mid 0$ 12 $A \rightarrow 00A \mid B$ $B \rightarrow 1A1$ UNIT - IV Construct a PDA to accept the language 7 a.

$$L(M) = \left\{ wCw^{R} \mid w \in (a+b)^{*} \right\}$$
12

Where w^{R} is reverse of w by a final state. Show the acceptance of the string aabCbaa.

b. Design a PDA to accept the language

$$L = \{ w \mid w \in (a+b)^* \text{ and } n_a(w) = n_b(w) \}$$

by an empty stack.

0	P13IS43 Page No 3	
8 a.	Obtain a PDA to accept a string of balanced parentheses. The parentheses to be considered are	10
	(,),[,].	
b.	Convert the following grammar into PDA :	
	$S \rightarrow aABB \mid aAA$	
	$A \rightarrow aBB \mid a$	10
	$B \rightarrow bBB \mid A$	
	$C \rightarrow a$	
UNIT - V		
9 a.	Explain the Turing machine model with a neat diagram.	8
b.	Design a Turing machine model to accept the language	
	$L = \left\{ a^n b^n \mid n \ge 1 \right\}$	12
10 a.	Construct a Turing machine to accept the language	
	$L = \{ w \mid w \in (0+1)^* \}$	8
	Containing the substring 001.	
b.	Describe a multi-tape Turing machines.	6
c.	Explain the Post's correspondence problem with an example.	6

* * * *