P13ME45 Page No 1 U.S.N U.S.N Image No 1 P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Mechanical Engineering Semester End Examination; May / June - 2018 Fluid Mechanics Max. Marks: 100		
Note: i) Answer FIVE full questions, selecting ONE	full question from each unit	
ii) Missing data if any, suitably assumed.		
UNIT		
a. Define the term viscosity, surface tension and cap	•	
b. Derive an expression for the pressure difference of	•	
 c. Calculate the capillary rise or depression in a gla vertically in (i) water and (ii) mercury. Take surf- water and mercury respectively in contact with a and angle of contact 130°. 	ace tension as 0.0725 N/m and 0.52 N/m for	
2 a. Define the terms density, specific volume, weight and vacuum pressure.	ht density, specific gravity, vapour pressure	
b. Derive an expression for capillary rise or depres and the density and surface tension of the liquid.	sion, given the value of the contact angle β	
c. A rectangular plate of base area 2500 cm ² and r making 30° angle with horizontal. If the 2 mm with lubricating oil of viscosity 11.42 Poise. Estin	gap between the plate and surface is filled	
UNIT -	II	
a. Derive an expression for total pressure force an surface submerged in a liquid.	nd center of pressure for an inclined plane	
b. Explain the conditions of equilibrium of a floating	g body in terms of Metacentric height.	
c. A circular plate of 3 m diameter and with a conce water in such a way that it's greatest and least dep respectively. Determine the total pressure force at	pth below the free surface are 4 m and 1.5 m	
a. With the help of sketch, explain inverted U tube of	lifferential manometer.	
b. Differentiate between the following :		
i) Simple manometer and differential manometerii) Center of buoyancy and Metacentric height		
c. A differential manometer is connected to two provide the height. Higher level pipes is carrying liquid of specific gravity carrying low pressure liquid is 2 m above the higher liquid	ecific gravity 0.9 at a pressure of 1.8 bar and ty 1.5 at a pressure of 1 bar. The center of	

UNIT - III

5 a. Distinguish between the following :i) Laminar flow and Turbulent flowiii) Steady and Unsteady flow

Find the difference in level of mercury in the manometer.

ii) Compressible and Incompressible flow

Contd...2

6

P13ME45 Page No 2	
b. Derive the expression for the continuity equations for three dimensional flows in Cartesian coordinate.	6
c. The stream function for a two dimensional flow is given by $\psi = 2xy$, calculate the velocity at the point <i>P</i> (2, 3). Find the velocity potential function ϕ .	8
6 a. Distinguish between :	
i) Uniform and Non-uniform flowii)Stream line and Path lineiii) Rotational and Irrotational flow	б
b. Develop Euler's equation of motion and then derive Bernoulli's equation.	6
 c. A 20 cm x 10 cm Venturimeter is inserted in a vertical pipe carrying oil of specific gravity 0.8. The flow of oil is in upward direction. The difference of levels between the throat and inlet section is 50 cm. The oil mercury differential monometer gives a reading of 30 cm of mercury. Neglect losses, find; 	8
i) The discharge of oil ii) The pressure difference between inlet and throat section	
UNIT - IV	
7 a. Define the following :	
i) Drag force and Lift forceii) Drag coefficient and Lift coefficientiii) Boundary layer thicknessiv) Critical Reynolds's number	8
b. Derive Darcy-Weisbatch formula to calculate the frictional head loss in pipe in terms of friction factor.	12
8 a. Distinguish between;	
i) Displacement thickness and momentum thickness ii) Major and minor losses	8
iii) Hydraulic gradient and total energy line iv) Pipes in series and pipes in parallel	
b. A reservoir has been built 4.5 km away from a town having a population of 5000, water is to be supplied from the reservoir to the town. The per person consumption of water is 200 liters /day and one half of the daily supplied is to be pumped in 10 hours. The head at the entry is 25 m and that at the exit is 5 m. Assuming that the head lost is due to friction in the pipe. Calculate the diameter of the supply pipe. Take coefficient of friction for the pipe as 0.032. Neglect the remaining all other minor losses.	
UNIT - V	
9 a. Derive Hagen Poiseuille equation for head loss due to friction in a pipe.	10
b. Define the following dimensionless numbers giving their significance :	
i) Reynolds's numberii) Euler's numberiii) Froude's numberiv) Weber's numberv) Mach number	10
10 a. Prove that the frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity μ and density ρ in a turbulent flow is given by, $T = (D^5 N^2 \rho) f \left[\frac{\mu}{D^2 N \rho} \right]$	10
b. A rectangular plate of height a and width b is held perpendicular to the flow of a fluid. The	

b. A rectangular plate of height *a* and width *b* is held perpendicular to the flow of a fluid. The drag force on the plate is influenced by the dimensions *a* and *b*, the velocity u, and the fluid properties, density ρ and viscosity μ . Obtain a correlation for the drag force in terms of dimensionless parameters. i.e. show that;

$$\frac{F}{\rho u^2 b^2} = f\left[\frac{a}{b}, \frac{\rho u b}{\mu}\right]$$

10