
U.S.N \square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belgaum) Sixth Semester, B.E. - Mechanical Engineering Semester End Examination; May / June - 2018

Heat and Mass Transfer
Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit
ii) Use of HMT data hand book permitted. Missing data if any suitable assumed.

UNIT - I

1 a. Derive 3-dimensional general heat conduction equation in cartesian coordinates with suitable assumptions.
b. Define fin efficiency and fin effectiveness.
c. Determine the steady state heat transfer through a double pane window, 0.8 m high, 1.5 m wide, consisting of two 4 mm thick glass layers ($\mathrm{K}=0.78 \mathrm{~W} / \mathrm{mC}$), separated by a 10 mm thick stagnant layer of air ($\mathrm{K}=0.026 \mathrm{~W} / \mathrm{mC}$), inside temperature of room air is maintained at $20^{\circ} \mathrm{C}$ with a convective heat transfer coefficient of $10 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$. Outside air temperature is $-10^{\circ} \mathrm{C}$ and the convective heat transfer coefficient on the outside is $40 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$. Also, determine the overall heat transfer coefficient.

2 a. What is thermal diffusivity? Explain its physical significance.
b. Derive expression for rate of heat transfer flowing through a long fin.
c. A Steel $\operatorname{rod}(K=30 \mathrm{~W} / \mathrm{mK}), 10 \mathrm{~mm}$ in diameter and 50 mm long with an insulated end is to be used as a fin. It is exposed to surroundings with a temperature of $65^{\circ} \mathrm{C}$ and a heat transfer coefficient of $50 \mathrm{~W} / \mathrm{m}^{3} \mathrm{~K}$. The temperature of the base is $98^{\circ} \mathrm{C}$. Determine;
i) Fin efficiency
ii) temperature at the end of the fin
iii) Heat dissipation.

UNIT -II

3 a. Derive temperature distribution and rate of heat transfer through a plane slab of variable thermal conductivity under steady state condition.
b. A pipe carrying pressurized water is embedded in a 1.2 m thick brick wall, whose surface are held at constant temperature of $200^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$ respectively. It is required to locate the pipe in the wall where temperature should not exceed $125^{\circ} \mathrm{C}$. Find how far from the hot surface, the pipe should be embedded? The thermal conductivity of wall material (brick) varies with temperature as $\mathrm{K}=0.28(1+0.035 \mathrm{~T}) \mathrm{W} / \mathrm{mK}$.
c. A plane wall of thickness 0.1 m and $\mathrm{K}=25 \mathrm{~W} / \mathrm{mK}$, having uniform volumetric heat generation of 0.3 MW/m3 is insulated on one side and is exposed to a fluid at $92^{\circ} \mathrm{C}$. The convective heat transfer coefficient between the wall and the fluid is $500 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine;
i) Maximum temperature in the wall
ii) Temperature at the surface exposed to the fluid.

P13ME63

4 a. Show that the temperature distribution in lumped system is given by $\frac{T-T_{\infty}}{T_{0}-T_{\infty}}=e^{-(B i)\left(F_{0}\right)}$
b. A long 15 cm diameter cylindrical shaft made of stainless steel ($\mathrm{K}=14.9 \mathrm{~W} / \mathrm{mC}$), $\rho=7900 \mathrm{~kg} / \mathrm{m}^{3}$, $\mathrm{C}_{\rho}=477 \mathrm{~J} / \mathrm{kgC}$ and $\alpha=3.95 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, comes out of an oven at a uniform temperature of $450^{\circ} \mathrm{C}$. The shaft is then allowed to cool slowly in a chamber at $150^{\circ} \mathrm{C}$ with an average heat transfer coefficient of $85 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}$. Determine;
i) The temperature at the centre of the shaft 25 min after the start of the cooling process.
ii) The surface temperature at that time
iii) The heat transfer per unit length of the shaft during this time period.

UNIT -III

5 a. Engine oil at $30^{\circ} \mathrm{C}$ is flowing with a velocity of $2 \mathrm{~m} / \mathrm{s}$ along the length of a flat plate maintained at $90^{\circ} \mathrm{C}$. Calculate at a distance of 40 cm from the leading edge.
i) Hydrodynamic and thermal boundary later thickness
ii) Local and average values of friction coefficient
iii) Local and average values of heat transfer coefficient
iv) Heat transferred from the first 40 cm of the plate for unit width.
b. A hot square plate $40 \mathrm{~cm} \times 40 \mathrm{~cm}$ at $100^{\circ} \mathrm{C}$ is exposed to atmospheric air at $20^{\circ} \mathrm{C}$. Make calculations for the heat loss from both surfaces of the plate. If;
i) The plate is kept vertical
ii) The plate is kept horizontal

The following empirical correlations have been suggested :
$\mathrm{Nu}=0.125(\mathrm{Gr} . \mathrm{Pr})^{0.33}$ for vertical position of the plate
$\mathrm{Nu}=0.72(\mathrm{Gr} . \mathrm{Pr})^{0.25}$ for upper surface
$\mathrm{Nu}=0.35(\mathrm{Gr} . \mathrm{Pr})^{0.25}$ for lower surface
Where the air properties are evaluated at the mean temperature.
c. Write the significance of;
i) Grashoff number
ii) Nusselt number.

6 a . Estimate the heat transfer rate from a 100 W incandescent bulb at $140^{\circ} \mathrm{C}$ to an ambient at $24^{\circ} \mathrm{C}$. Approximate the bulb at 60 mm diameter sphere. Calculate the percentage of power lost by natural convection. Use the following correlation and air properties: $N_{u}=0.6(\mathrm{Gr} . \operatorname{Pr})^{0.25}$, the properties of air at $82^{\circ} \mathrm{C}$ are: $\gamma=21.46 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}, \mathrm{K}=30.38 \times 10^{-3} \mathrm{~W} / \mathrm{mK}$ and $\mathrm{P}_{\mathrm{r}}=0.699$.
b. Calculate the rate of heat loss from a human body which may be considered as a vertical cylinder of 30 cm in diameter and 175 cm high, while standing in a $30 \mathrm{~km} / \mathrm{hr}$ wind at $15^{\circ} \mathrm{C}$ the surface temperature of the human body is $35^{\circ} \mathrm{C}$.
c. Show using Buckingham- π theorem of dimensional analysis, that in a natural convection problem, the Nusselt number is a function of Grashoff number and Prandtl number.

UNIT - IV

7 a. State and explain;
i) Kirchhoff's law
ii) Wein's displacement law
iii) Planck's law
iv) Lambert cosine law.
b. Consider two large parallel plates at $\mathrm{t}_{1}=727^{\circ} \mathrm{C}$ with emissivity $\varepsilon_{1}=0.8$ and $\mathrm{t}_{2}=227^{\circ} \mathrm{C}$ with emissivity $\varepsilon_{2}=0.4$. An aluminum radiation shield with an emissivity, $\varepsilon_{\mathrm{s}}=0.05$ on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield.
8 a. Prove that for a black body enclosed in a hemispherical space, the emissive power of the black body is equal to π times its intensity of radiation.
b. Calculate the following for an industrial furnace in the form of a black body and emitting radiation at $2500^{\circ} \mathrm{C}$.
i) Monochromatic emissive power at $1.2 \mu \mathrm{~m}$ length
ii) Wavelength at which the emission is maximum
iii) Maximum emissive power
iv) Total emissive power
v) Total emissive power of the furnace if it is assumed as a real surface with emissivity equal to 0.9

UNIT - V

9 a. Obtain an expression for the effectiveness of a parallel flow heat exchanger in terms of 'NTU' and the capacity ratio ' C '.
b. Explain Fick's first law of diffusion.
c. Differentiate between film wise and drop wise condensation.

10 a . With the help of a typical experiment boiling curve, explain the different regimes of pool boiling.
b. Write a note on fouling factor in heat exchangers.
c. A counter flow double pipe heat exchanger using superheated steam is used to heat water at the rate of $10500 \mathrm{~kg} / \mathrm{h}$. The steam enters the heat exchanger at $180^{\circ} \mathrm{C}$ and leaves at $130^{\circ} \mathrm{C}$. The inlet and exit temperature of water are $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ respectively. If overall heat transfer coefficient from steam to water is $814 \mathrm{~W} / \mathrm{m}^{2^{\circ}} \mathrm{C}$, calculate the heat transfer area. What would be the increase in area if the fluid flows were parallel?

