

Time: 3 hrs

Max. Marks: 100

8

12

8

12

Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I

1 a. Explain scope of OR.

A truck company requires the following number of drivers for its trucks during 24 hours : b.

Time	No. of Required
0 - 4 hr	5
4 - 8 hr	10
8 - 12 hr	20
12 - 16 hr	12
16 - 20 hr	22
20 - 24 hr	8

According to shift schedule a driver may join to duty at midnight 4, 8, 12, 16 and 20 hrs and work continuously for 8 hrs. Formulate the problem as L.P Problem.

2 a. Explain the following terms with respect to LPP :

i) Alternate optimal solutions	ii) Unbounded solutions	

iii) Infeasible solutions iv) Redundant constraint

b. Solve graphically,

Maximize $Z = 2x_1 + x_2$ Subject to $x_1 + 2x_2 \le 10$ $x_1 + x_2 \le 6$ $x_1 - x_2 \leq 2$ $x_1 - 2x_2 \le 1$ and $x_1, x_2 \ge 0$

UNIT - II

3. Use two-phase simplex method to solve the following LPP :

Maximize
$$Z = 3x_1 + 2x_2 + 2x_3$$

Subject to $5x_1 + 7x_2 + 4x_3 \le 7$
 $-4x_1 + 7x_2 + 5x_3 \ge -2$
 $3x_1 + 4x_2 + 5x_3 \ge 29/7$

Solve by simplex method the following LPP : 4.

 $x_1, x_2, x_3 \ge 0$

Minimize
$$Z = x_1 - 3x_2 + 3x_3$$

Subject to $3x_1 - x_2 + 2x_3 \le 7$
 $2x_1 + 4x_2 \ge -12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$
 $x_1, x_2, x_3 \ge 0$

20

P13ME82

UNIT - III

5. Determine the optimized solution to the following transportation problem :

					Stores				
		1	2	3	4	5	6	Supply	
Warehouses	1	9	12	9	6	9	10	5	20
Warehouses	2	7	3	7	7	5	5	6	
	3	6	5	9	11	3	11	2	
	4	6	8	11	2	2	10	9	
Demand		4	4	6	2	4	2	-	

6. Solve the following transportation and check for optimality,

	\mathbf{W}_1	W_2	W_3	W_4	W_5	Available
F_1	7	6	4	5	9	40
F_2	8	5	6	7	8	30
F_3	6	8	9	6	5	20
F_4	5	7	7	8	6	10
Required	30	30	15	20	5	-
UNIT - IV						

7. Solve the following assignment problem to get optimal allocation;

	Ι	II	III	IV	V
1	10	5	9	18	11
2	13	9	6	12	14
3	3	2	4	4	5
4	18	9	12	17	15
5	11	6	14	19	10

8. Find the optimal solution to following assignment problem :

	1	2	3	4	5	6
Α	12	10	15	22	18	8
В	10	18	25	15	16	12
С	11	10	3	8	5	9
D	6	14	10	13	13	12
Е	8	12	11	7	13	10
UNIT - V						

9. Solve the game given below by graphical method :

		Player B						
		Y_1	Y ₂	Y ₃	Y ₄			
	X_1	19	6	7	5			
Player A	X_2	7	3	14	6			
	X_3	12	8	18	4			
	X_4	8	7	13	-1			

10. Solve the following 2 x 5 game by graphical method :

		Player B						
		Y_1	Y ₂	Y ₃	Y_4	Y ₅		
Player A	X_1	-5	5	0	-1	8		
	X_2	8	-4	-1	6	-5		

20

20

20

20

20