

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

U.S.N

Fourth Semester, B.E. - Computer Science and Engineering Semester End Examination; May/June - 2018

Theory of Computation

Time: 3 hrs

Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I

1 a. Design a DFA for the following languages :

i)
$$L = \{w(ab+ba) | w \in \{a,b\}^*\}$$
 ii) $L = \{w | |w| \mod 5 \neq 0 \text{ where } w \in \{a,b\}^*\}$ 10

b. Convert the below NFA into its equivalent DFA.

$$\begin{array}{c} s + \mathbf{a}\mathbf{v} + \mathbf{a}\mathbf{v} = \mathbf{b} \\ \text{nce between DFA, NFA and } \in -\text{NFA.} \end{array}$$

- c. Mention the difference between DFA, NFA and \in -NFA.
- 2 a. Convert the \in -NFA to equivalent DFA.

b. Define distinguishable and indistinguishable pairs: Minimize the following DFA.

3 a. Obtain the regular expression for the following finite automata using Kleen's theorem.

$\cap I$			<u>f</u> c
the o	$\rightarrow 2h$	<u> </u>	±(3))
U		1	

Obtain the regular expression for the following : b. i) Strings of 0's and 1's with no two consecutive Zero's 4 ii) Strings *a*'s and *b*'s whose length is either even or multiple of 3 or both Prove that if R is a regular expression, then there exists a finite automation that accepts L(R). c. 6 State and prove Pumping Lemma for regular language. 4 a. 8 Show that L= $\{ww^R | w \in \{0+1\}^*\}$ is not regular. b. 6 Show that regular languages are closed under compliment and difference. 6 c.

Contd...2

10

P15CS43

UNIT - III

	UNIT - III	
5 a.	Define CFG. Obtain the CFG for the following languages :	_
	<i>i</i>) $L = \{a^n b^n \mid n \ge 0\}$ <i>ii</i>) $L = \{ww^R \mid w \in \{a, b\}^*\}$	5
b.	Obtain the leftmost and rightmost derivation for the string 'abababa' from the grammar $S \rightarrow SbS \mid a$	5
c.	Define the term ambiguity and show that $E \rightarrow E + E \mid E * E \mid a$ is ambiguous.	5
d.	Show that CFL are not closed under intersection.	5
6 a.	Eliminate epsilon unit and useless production from the following grammar :	
h	$S \rightarrow ABC \mid BaB$ $A \rightarrow aA \mid BaC \mid aaa$ $B \rightarrow bBb \mid a \mid D$ $C \rightarrow CA \mid AC$ $D \rightarrow C$ Define CNE and CNE. Convert the following groupper into CNE :	10
b.	Define CNF and GNF. Convert the following grammar into CNF : $S \rightarrow aBa \mid abba$	
	$S \rightarrow aba abba AA$	10
	$B \rightarrow aB \mid a$	
	UNIT - IV	
7 a.	Construct a PDA for the language $L = \{ww^R \mid w \in \{a, b\}^*\}$ and show the string acceptance.	10
b.	Construct a PDA for the language $L = \{a^n b^{2n} \mid n \ge 1\}$ and show the string acceptance.	10
8 a.	Convert the following grammar:	
	$S \rightarrow aSa \mid aa$ $S \rightarrow bSb \mid bb$	10
	to PDA that accepts the same language by empty stack.	
b.	Check whether the PDA for the language $L = \{w \subset w^R \mid w \in \{a, b\}^*\}$ is deterministic or not.	10
	UNIT - V	
9 a.	Design a Turing machine to accept the language :	10
	$L = \{ n_a(w) = n_b(w), \text{ where } w \in \{a, b\}^* \}.$	10
b.	Design a Turing machine to accept the language	10
	$L = \{w w \text{ is a palindrome, where } w \in \{a, b\}\}.$	10
10.	Write a short note on the following :	
	i) Multi tape Turing machine	
	ii) Post correspondence problem	20
	iii) Problem of decidable	
	iv) Halting problem	