U.S.N

reduce parsing with an example.

b. Write LR parsing algorithm.

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Computer Science and Engineering Semester End Examination; May/June - 2018 **Compiler Design**

Time: 3 hrs	Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

	UNIT - I			
1 a.	With a neat diagram, explain the phases of a compiler. Show the translation made by each of	10		
	the phases for the statement $a = b + c * 10$ where a, b and c are real.	12		
b.	Explain the input buffering strategy used in lexical analysis phase.	8		
2 a.	With neat diagram, explain the role of lexical analyzer.	6		
b.	Define the term Token, Pattern and Lexeme. Find the same for the following program			
	fragment:	8		
	printf("Total = %d\n average = %f \n", score, area);			
c.	Define regular expression and write transition diagram to recognize the tokens given below:	6		
	i) Identifier ii) Unsigned number	O		
	UNIT - II			
3 a.	Define Left Recession and Left Factoring. Give the algorithm used for eliminating Left	8		
	Recursion.	O		
b.	Construct the predictive parsing table for the given grammar and show the parsing steps for			
	the string "uvuvx2"			
	$S \rightarrow uB2$	12		
	$B \rightarrow Bv / vuE / vxuE / ByE$			
	$E \rightarrow v / vx$			
4 a.	Briefly explain the problem associated with Top Down Parsing.	6		
b.	Explain Non-recessive Predictive Parsing algorithm.	6		
c.	Compute First() and Follow() symbols for the following grammar and check whether			
	grammar is LL(1):			
	$S \rightarrow iEtSS'/a$	8		
	S' ightarrow eS/arepsilon			
	$E \rightarrow b$			
	UNIT - III			
5 a.	Explain the working of shift reduce parser and also conflicts that may arise during shift	_		
		h		

6

6

P	15CS63 Page No 2	
c.	Construct LR(0) item for given grammar : $A \rightarrow (A) / a$	8
6 a.	Write the algorithm for constructing set of LR(1) items.	8
b.	Construct LALR parsing table for the following grammar:	
	$S \to CC$	12
	$C \rightarrow cC/d$	
	UNIT - IV	
7 a.	Define the following terms with an example :	
	i) Syntax directed definition	
	ii) Inherited attribute	10
	iii) Synthesized attribute	
	iv) Annotated parse tree	
b.	Give the syntax directed definition to process a simple variable declaration in C and draw	10
	dependency graph for $int id_1$, id_2 , id_3 .	10
8 a.	Explain in detail different dynamic storage allocation strategies.	10
b.	Describe an activation record. Explain the purpose of each item in an activation record with	10
	an example.	10
	UNIT - V	
9 a.	What is DAG? Write DAG for the expression:	4
	((x+y)-((x+y)*(x-y)))+((x+y)*(x-y).	·
b.	Name the different types of representation of 3-address code and translate the given	
	arithmetic expression into each type.	6
	a-b*c+d-a+b	
c.	Describe the method of generating intermediate code for the branching statement (if/if-else).	10
10 a.	Briefly explain main issues in code generation.	10
b.	Explain the code generation algorithm and generate code for the following expression : $x = (a - b) + (a + c)$.	10