P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

I/II Semester, B.E. - Semester End Examination; May/June - 2018 Engineering Mechanics (Common to All Branches)

Max. Marks: 100
Time: 3 hrs
Note: i) Answer FIVE full questions, selecting ONE full question from each unit
ii) Missing data can be suitably assumed.

UNIT - I
1 a. State the Newton's three laws of motion.
b. State and explain principle of transmissibility.
b. Determine the reactions at A and B for the loaded beam shown in Fig. 2(b).

b. A block weighing 4000 N is resting on horizontal surface supports another block of 2000 N as shown in Fig. 3(b). Find the horizontal force F just to move the block to the left. Take the coefficient for all contact surfaces as 0.2 .

P15CV13/23

4 a. Explain the terms: i) Limiting friction
ii) Angle of repose
iii) Cone of friction
iv) Angle of friction
b. A ladder 5 M long rests on horizontal floor and against a smooth vertical wall at angle of 70° with the floor. The weight of ladder is 900 N . The ladder is at the verge of slipping when a man weighing 750 N stands on it at a distance of 3.5 m measured along the ladder from top of ladder. Determine the coefficient of friction between the ladder and the floor.

UNIT - III

5 a. Define: i) Centre of gravity
ii) Centroid
iii) Axis of symmetry iv) Axis of reference.
b. Determine the Centroid of an area shown in Fig. 5(b) with respect to $O X$ and $O Y$. All dimensions are in mm .

b. Locate the Centroid of plane lamina as shown in Fig. 6(b).

UNIT - IV
7 a. State and prove parallel axis theorem.
b. Derive the expression for moment of inertia of a triangle about the base using method of integration.
c. Determine the radius of gyration and MI about its base AB for the area shown in Fig. 7(c) all dimensions are in mm.

P15CV13/23

8 a. Define the terms: i) Radius of gyration
ii) Polar moment of Inertia.
b. From the first principle obtain an expression for the second moment of rectangle about its centroidal axis.
c. Find the moment of Inertia of section shown in Fig. 8(c) about its horizontal centroidal axis.

9 a. Define work, power and energy.
b. Explain D'Alembert's principle and its significance.
c. A parachute weighing 500 N falling with uniform acceleration from rest descends 5 m in the first four seconds. Find the resultant pressure of air on the parachute.

10 a . Define the following terms :
i) Projectile
ii) Angle of projection
iii) Horizontal range
iv) Vertical height
v) Time of flight
b. A cricket ball thrown from a height of 1.8 m above ground level at an angle of 30° with horizontal with velocity of $12 \mathrm{~m} / \mathrm{s}$ and is caught by fielder at a height of 0.6 m above the ground. Determine the distance between two players.

