U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E. - Civil Engineering

Semester End Examination; May/June - 2018 Waste Water Treatment

Time: 3 hrs Max. Marks: 100

Note: i) Answer **FIVE** full questions, selecting **ONE** full question from each unit.

ii) Missing data, if any, may be assumed suitably.

- UNIT I

 1 a. Explain briefly the different types of sewerage system and state their merits and demerits.

 8 b. Define dry weather flow and explain the factors affecting dry weather flow.

 6 c. A certain district of a city has a projected population of 50,000 residing over an area of 40 hectares. Find the design discharge for the sewer line, for the following data:

 i) Rate of water supply = 200 LPCd

 ii) Average impermeability coefficient for the area = 0.3

 iii) Time of concentration = 50 minutes

 The sewer line is to be designed for a flow equivalent to wet weather flow plus twice the DWF. Use U.S. ministry of health formula. Assume that 75% of W/S reaches in a sewer as waste water.
- 2 a. Explain the rational method of estimating storm water flow. Explain the various parameters used in this method.
 - b. Explain different shapes of sewers and their application with neat sketches.
 - c. A stone ware sewer 30 cm in dia is laid in a gradient of 1 in 100. Using N = 0.013 in Manning's formula, calculate the velocity, discharge and Chezy's coefficient when the sewer is running full.

UNIT - II

- 3 a. Brief explain the factors considered for selecting sewer materials and list the sewer materials commonly used.
 - b. Briefly explain different tests for testing of sewer lines.
 - c. Write a note on ventilation and cleaning of sewers.
- 4 a. With a neat sketch, explain working of automobile flushing tank.
 - b. Write the advantages and disadvantages of centrifugal and reciprocating pumps.
 - c. Write the typical layout plan showing home drainage connections and maintenance of home drainage.

6

8

6

8

6

6

8

8

4

P15CV61 Page No... 2

UNIT - III

5 a.	a. With examples, explain the concepts of Aerobic and Anerobic stabilization with respect							
	waste water.							
b.	Define BOD. Deduce the expression for 1 st stage BOD.	8						
c.	Determine the 1-day BOD and estimate first stage BOD for waste water whose 5-day BOD is	6						
	200 mg/l. The reaction constant K (base e) is 0.23/day.	U						
6 a.	Discuss fully the action involved in self-purification process of water bodies.							
b.	b. With a neat sketch, explain different zones of pollution in water bodies.							
c.	Explain the following:	6						
	i) Sewage farming ii) Sewage sickness.	6						
	UNIT - IV							
7 a.	With a flow diagram, explain a conventional sewage treatment plans and discuss the functions of each unit.							
b.	With a neat sketch, explain working of circular sedimentation tank.							
c.	Design a primary settling tank of rectangular shape for a town having a population of 50,000							
	with a water supply of 180 LPCd. Assume 80% of water supply is converted into waste	6						
	water and assume any other missing data suitably.							
8 a.	With some examples, explain suspended and attached growth system in biological treatment							
	of waste water.	6						
b.	With a neat sketch, explain the construction and working of trickling filter.	8						
c.	Design high rate tricking filter for the following data:							
	i) Sewage flow = 5 MLD ii) Recirculation Ratio = 1.5							
	iii) BOD of Raw sewage = 230 mg/l iv) BOD removel = 30%	6						
	v) Final effluent BOD desired = 25 mg/l							
	UNIT - V							
9 a.	With the help of flow diagram, explain the working of activated sludge process.							
b.	Mention modification of ASP and explain any two of them.							
c.	Briefly explain Carbon cycle.	4						
10.	Write short notes on:							
	a) Sludge Digestor b) Sludge drying beds	20						
	c) Oxidation ditches d) Types of Screens							