

is 40 m. A flow net constructed for this condition yielded seven flow channels and sixteen equipotential drops. What is the seepage loss per day?

UNIT - III

- 5 a. Explain in brief active earth pressure, passive earth pressure and earth pressure at rest condition. 6
 - b. Explain the graphical method of estimating active earth pressure of cohesion less soil by 6 Rebhann's construction.
 - c. A retaining wall 4 m height supports a backfill have the following properties:

 $C = 200 \text{ kN/m}^2$, $\phi = 30^\circ$ and $\gamma = 20 \text{ kN/m}^3$ with horizontal top flush with the top of the wall. The backfill carries a surcharge of 20 kN/m². If the wall is pushed towards the backfill, compute the total passive pressure on the wall and its point of application.

8

T		
	Page No 2 What are the assumptions of Rankine's active earth pressure theory?	4
b.	Derive an expression for Bell's equation.	6
c.	A retaining wall 8 m height supports a sandy backfill having $e = 0.6$, $G = 2.65$ and $\phi = 30^{\circ}$.	
	Ground water table is 2 m below the ground surface. Draw the active pressure diagram and	10
	determine the magnitude and point of application of total active earth pressure. Assume soil	10
	above ground water as a degree of saturation 50%.	
UNIT - IV		
7 a.	Distinguish between natural slope and manmade slope.	4
b.	Explain the method of slices for stability analysis of slope.	6
c.	A tempary cutting 8 m deep is to be made in clay having a unit weight of 18 $\rm kN/m^3$ and an	
	average cohesion of 20 kN/m^3 . A hard stratum of rock exists at a depth of 12 m below the	10
	ground surface. Using Taylor's stability curves to estimate if a 30° slope is safe. If a F.O.S of	10
	1.25 is considered necessary, find the safe slope angle. Take $S_n = 0.163$.	
8 a.	Explain under what conditions the following types of failures are expected?	6
	i) Base failure ii) Toe failure	
b.	What is Taylor's stability number? Explain its significance.	6
c.	A 5.5 m deep canal with a side slopes of 1:1 is made in a soil strata having $C_u = 20 \text{ kN/m}^2$,	
	$\phi_u = 12^\circ$ and $e = 0.8$ and $G = 2.64$. If Taylor's stability number is 0.108, determine the factor of	
	safety with respect to cohesion when the canal water is full up to the top of the bank. Also	8
	determine the F.O.S for the case of sudden draw down, if the Taylor's stability number for this	
	condition is 0.139.	
0	UNIT - V	4
9 a.	Mention the typical characteristics of local shear failure.	4
b.	Describe the effect of water table on bearing capacity.	6
c.	Determine the allowable grass load and net allowable load for square footing of 2 m wide and 1 m deep. The soil at the site has unit weight 18 kN/m ³ and shear parameters are 15 kN/m ² and	
		10
	25° respectively. Use Terzaghi's analysis and assume local shear failure. Take F.O.S = 3. Take $N_c' = 14.8$, $N_q' = 5.6$, $N_r' = 3.2$.	
10 a.	Briefly explain the concept of immediate, consolidation and secondary consolidation settlements.	6
10 a. b.	What are the factors affecting settlement of footings.	6
о. с.	A soft normally consolidated clay layer is 6 m thick with water content of 35%. The clay has a	0
с.	saturated unit weight of 18 kN/m^3 , specific gravity is 2.67 and a liquid limit of 37%, the ground	
	water level is at the surface of clay. Determine the settlement of the foundation, if the foundation	8
	load will subject to the centre of clay layer to a vertical stress increases of 10 kN/m^2 .	