P15EC43

Page No... 1
U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; May/June - 2018 Power Electronics

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. With a neat sketch, explain the control characteristics of power switching devices.
 - b. With the help of a neat block diagram, explain generalized power converter system.
 - c. List the advantages and disadvantages of MOSFET over BJT.
- 2 a. With the help of a neat transient model and waveforms, explain the transient model of BJT.
 - b. Explain the need for base drive control with necessary equations, explain Turn on control.
 - c. The Bipolar transistor shown in the Fig. Q2(c) is specified to have β in the range of 8 to 40. The load resistance $R_c = 11~\Omega$. The DC supply voltage $V_{CC} = 200~V$ and the input voltage to the base circuit is V_B 10 V. If $V_{CE(Sat)} = 1~V$ and $V_{BE(Sat)} = 1.5~V$. Find;
 - i) The value of $R_{\mbox{\scriptsize B}}$ that results in saturation with an overdrive factor of 5
 - ii) The forced β_f
- iii) The power loss P_T in the Transistor

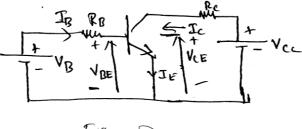


Figure 220

UNIT - II

- 3 a. With the help of a two transistor model for a thyristor, explain Regenerative action.
 - b. Explain the different way of turning ON a thyristor.
 - c. Differentiate between Phase-Control thyristor and Fast-Switching thyristor.
- 4 a. With the help of a neat diagram and waveforms, explain turn off characteristics of thyristors for a line commutated thyristor.
 - b. Ten Thyristors are used in a string to withstand a DC voltage of $V_s=15$ kV. The maximum leakage current and recovery change differences of thyristors are 10 mA and 150 μ C respectively. Each thyristor has a voltage sharing resistance of R=56 k Ω and capacitance of G=0.5 μ F. Determine;
 - i) Maximum steady-state voltage sharing $V_{DS(Max)}$
- ii) The steady state voltage derating factor
- iii) The maximum transient voltage sharing $V_{DT(max)}$
- iv) The transient voltage derating factor
- c. Explain UJT triggering circuit for full wave rectifier.

4

8

6

8

6

8

10

2

8

8

P15EC43 Page No... 2

UNIT - III

5 a.	. With the help of a neat diagram and waveforms, explain the principle of ON-OFF AC-Voltage controller.	8
b.	. Single phase half-wave controller is having a pure resistance load of $R = 10 \Omega$ and supply voltage	
	is 230 V, 50 Hz. If the delay angle of thyristor T is $\alpha = \pi/2$ rad. Compute;	_
	i) The rms value of output voltages and output current ii) The input power factor	6
	iii) The rms and average thyristor current	
c.	. With the help of a neat diagram and waveforms, explain the operation of a single-phase full wave	_
	AC voltage controller.	6
6 a.	. With the help of neat diagram and waveforms, explain the operation of single phase controlled	
	HWR with R load.	6
b.	. A single phase full converter operating from a single phase 230 V, 50 Hz supply has a resistive	
	load of $R = 15 \Omega$. If the average load current is 11.78 A. Find;	
	i) Delay angle α ii) rms values of output voltage and current	6
	iii) Average rms value of thyristor current	
c.	. With neat diagram and wave forms, explain the operation of dual converter. List the advantages	0
	and disadvantages of circulating current.	8
	UNIT - IV	
7 a.	. Explain the operation of step down chopper with RL load.	8
b.	. A chopper is feeding an RL load with $V_s=220$ V, $R=5$ Ω , $L=7.5$ mH, $f=1$ kHz, $K=0.5$,	
	E = 0 V. Calculate;	
	i) Maximum instantaneous load current I ₁	6
	ii) Peak instantaneous load current I ₂	
	iii) Maximum peak to peak load ripple current	
c.	Explain the principle operation of step-up chopper.	6
8 a.	Explain the performance parameter of choppers.	6
b.	. List the application of chopper.	4
c.	Explain the clarification of choppers based on the polarity of average output voltages and currents.	10
	UNIT - V	
9 a.	Explain the principle of operation of single phase half bridge inverter with R load.	10
b.	. With the help of a neat diagram and waveforms explain:	10
	i) Single PWM ii) Sinusoidal PWM used in the voltage control of Invertor	
10 a.	. With the help of a necessary circuit diagrams, explain any two configuration for switched mode	10
	DC power supplies.	
b.	Explain the following with respect to UPS configurations:	
	i) Load normally connected to ac main supply	10
	ii) Load normally connected to inverter.	