PISEC46 Page No 1	
U.S.N U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Electronics and Communication Engineering	
Semester End Examination; May / June - 2018	
Electromagnetic Field Theory Time: 3 hrs Max. Marks: 100	
<i>Note:</i> Answer <i>FIVE</i> full questions selecting, <i>ONE</i> full question from each unit.	
UNIT - I	
1 a. Derive an expression for the electric field intensity due to infinite line charge.	10
b. Charger of 20 nc and -20 nc are located at (3, 0, 0) and (-3, 0, 0) respectively. Determine	
\vec{E} at P(0, y, 0).	6
c. Explain electric field intensity at a point due to a point charge.	4
2 a. State and explain Gauss's Law. Mention the limitations of Gauss's law.	1(
b. Given $\vec{D} = \frac{5r^2}{4} \hat{a}_r \frac{c}{m^2}$. Evaluate both the sides of divergence theorem for the volume enclosed by $r = 4$ m and $\theta = \frac{\pi}{4}$.	10
UNIT - II	
3 a. Show that $\vec{E} = -\nabla V$ where \vec{E} is the electric field intensity and V is the scalar potential.	6
b. Obtain the point form of continuity equation.	7
c. Given $V = 2x^2y - 5z$ at point P (-4, 3, 6) find the potential, electric field intensity and volume charge density.	7
4 a. Find the capacitance of a conducting sphere of 2 cm in diameter, covered with a layer of $2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 $	10

b. Use Laplace's equation to find the capacitance per unit length of a co-axial cable of inner radius '*a*' m and outer radius '*b*' m. Assume $V = V_0$ at r = a and V = 0 at r = b.

UNIT - III

5 a.	Obtain the expression for the magnetic field intensity at a point due to a current carrying	10
	straight conductor of infinite length.	

b. Given the vector magnetic potential $\vec{A} = x^2 \hat{a}_x + 2yz \hat{a}_y + (-x^2) \hat{a}_z$ find the magnetic flux density.

c. List any four properties of curl.

polyethylene with $\varepsilon_r = 2.26$ and 3 cm thick.

- 6 a. Derive an expression for the force on a differential current element placed in a magnetic field.
 - b. Explain the concept of magnetic boundary conditions for normal component and tangential component.

10

10

6

4

10

UNIT - IV

7 a. A parallel plate capacitor with plate area of 5 cm^2 and plate separation of 3 mm has a	
voltage of 50 sin 10^3 t V applied to its plates. Calculate the displacement current	8
assuming $E = 2\varepsilon_{0.}$	
b. For time varying field, show that $\vec{E} = -\nabla V - \frac{\partial \vec{A}}{\partial t}$ where \vec{A} is vector magnetic potential.	8
^{c.} A 10 GHz plane wave travelling in a free space has an amplitude of \vec{E} as $E_x = 10$ V/m. Find	1
β , η , v and λ .	4
8 a. Write a short note on skin effect in good conductors.	6
b. A uniform plane wave of 200 MHz travelling in a free space impinges normally on a large	
block of material having $\epsilon_r = 4$, $\mu_r = 9$, $\sigma = 0$. Calculate transmission and reflection	6
coefficient at the interface.	
c. State and explain Poynting theorem.	8
UNIT - V	
9 a. Explain the effect of spherical earth surface on radio waves.	10
b. Explain different types of signals fading.	10
10 a. Define :	
i) Skip distance	6
ii) MUF	0
iii) Virtual height	
b. A distance of 1500 m is to be established along earth surface using communication link, if	
the reflection region of ionosphere has $f_{cr} = 6$ MHz and $f_{mup} = 7.5$ MHz. Calculate the height	8
of the region.	
c. Explain the characteristics of E and F layers of ionosphere layers.	6

* * * *