TI S N					
U.S.N					
0					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; May/June - 2018 Digital Design Using Verilog HDL

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

	01111 - 1						
1 a.	Illustrate the different system tasks and compiler directives with examples.						
b.	Develop the verilog description and stimulus for 4:1 multiplexer using gate level modeling.						
2 a.	. Develop the verilog description and stimulus for 4-bit ripple carry full adder.						
b.	Write the verilog code for 4 to 1 multiplexer using conditional operators.	6					
c.	Develop a verilog code for T flip-flop in dataflow description.	6					
	UNIT - II						
3 a.	Explain the following with an example:	10					
	i) Always statement ii) Event based timing control iii) Conditional statements	10					
b.	b. Develop a verilog module to generate a bit-wise nor of two <i>n</i> -bit buses.						
4 a.	a. Explain the different loop statements with example.						
b.	Explain function declaration and invocation with example.	10					
	UNIT - III						
5 a.	. Develop verilog code for D flip-flop with procedural continuous assignments.						
b.	b. Explain different types of delay models with example.						
c.	Explains MOS switches.	4					
6 a.	Develop the switch level verilog model stimulus for two inputs NOR gate.	10					
b.	Briefly discuss the flow diagram of delay back Annotation.	10					
	UNIT - IV						
7 a.	a. Develop a verilog model and stimulus for 4-to-1 multiplexer with UDP.						
b.	e. Explain simulation flow using PLI routines.						
8 a.	Develop a verilog UDP description for negatively edge triggered D flip-flop with clear.						
b.	Explain basic computer-aided logic synthesis process.	10					
	UNIT - V						
9 a.	Develop a verilog model for newspaper vending machine FSM.	10					
b.	Explain the process of traditional verifications flow with the help of flow chart.	10					
10 a.	a. Explain Architectural modeling.						
b.	Briefly discuss the verifications methodology with a hardware accelerator.	8					
c.	Briefly explain assertion checking.	6					