

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- Explain the natural sampling with relevant wave forms with all time domain and frequency domain equations.
- b. A low pass signal g(t) and its spectrum id given by,

$$G(f) \begin{cases} 1 - \frac{|f|}{200} & |f| < 200 \ Hz \\ 0 & \text{Elsewhere} \end{cases}$$

Page No... 1

8

6

8

6

6

i) Assume that g(t) is ideally sampled, $f_s = 300$ Hz. Sketch the spectrum of the signal

- ii) Repeat part (i) for $f_s = 400$ Hz.
- c. With a neat block diagram, explain the operation of digital communication system. Explain functioning of each block.
- 2a. A signal $g(t) = 10\cos(20\pi t)$. $\cos(200\pi t)$ is sampled at the rate of 250 samples/s
 - i) Sketch the spectrum of the sampled signal
 - ii) Specify the cut-off ideal reconstruction filter so as to recover g(t) from $g_{\delta}(t)$
 - iii) Specify the Nyquist rate for the signal g(t)
 - b. Explain the different channels used in digital communication system.
 - c. Discuss the concept of practical sample and hold circuit along with block diagram and spectrum of output signal.

UNIT - II

3 a. Explain the concept of mid-riser and mid-tread type of quantizing with related graphs.
b. With block diagrams, explain DPCM transmitter and receiver.
c. What is the necessity of non- uniform quantization? Explain two compounding methods used in practice.
4 a. With block diagram and equations, explain adaptive delta modulation.
b. The bandwidth of a signal is 34 kHz, if this signal is converted to PCM bit stream with 1024 levels. Determine the number of bits/s generated by the PCM system. Assume that the signal is sampled at the rate of 20% above the Nyquist rate.

P15EC64

Page No... 2

c. A PCM system uses a uniform quantizer by n-bits encoder. Show that the rms signal to quantization noise ratio is approximately given by $SNR = 1.8 + 6n \, dB$. Assume that input to 6 PCM system is a sinusoidal signal.

UNIT - III

5 a. Estimate the power spectral density of a bipolar NRZ pulse.	8
b. Sketch the encoded wave form for the bit stream 011100101 for the following schemes :	6
i) RZ-unipolar ii) Bipolar NRZ iii) Manchester	
c. Explain adaptive equalizing filter for base band transmission.	6
6 a. Explain raised cosine spectrum solution to reduce ISI.	10
b. The binary data 001101001 are applied to the input of a modified duo binary system	
i) Construct the modified duo binary coder output without pre-coder	10
ii) Suppose that due to error in transmission the level produce the 3 rd digit is reduced to zero	
construct a new receiver output	
UNIT - IV	

UNIT - V	
b. Derive probality of error for coherent FSK system	10
8 a. Explain the working of DPSK transmitter and receiver with block diagram.	10
b. Explain in detail transmitter and receiver of QPSK.	10
7 a. Explain coherent binary PSK. And also derive the equation of probality error.	10

9.a Explain the Gram-Schmidt orthogonalization procedure with related diagram.	10
b. With a neat block diagram, explain matched filter.	10

10 a. Consider the signal $S_1(t)$, $S_2(t)$, $S_3(t)$, $S_4(t)$ as given below

Find an orthonormal basis function for these set of signal using Gram-Schmidt orthogonalization procedure.

b. Explain the importance of geometric interpretation of signals. Illustrate the geometric 10 representation of signals for case of a 2-dimensional signal space with 3 signals.

* * * *