
4

8

- 3 a. Explain the block diagram rules to perform the following :
 i) Shifting a summing point
 ii) Shifting a take off point beyond the block
 - b. Obtain closed loop transfer function $\frac{C(S)}{R(S)}$ using Manson's gain formula for the signal flow graph shown in Fig. 3(b).

c. Use block diagram to find the transfer function for the network in Fig. 3(c)

4 a. Calculate the error coefficient and error for ramp input with magnitude 4 for unity feedback system

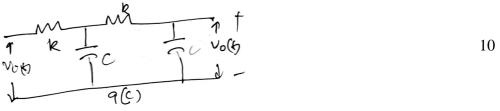
$$G(S) = \frac{40(S+2)}{S(S+1)(S+4)}$$
10

b. Write the output response to a unit step input for a unity feedback system with

$$G(S) = \frac{64}{S(S+9.6)}$$
 10
Contd...2

P15EC64A

Determine the response at t = 0.1 s, maximum value of response and setting time.


UNIT - III

0111 - 111		
5 a.	Write a note on Routh Hurwitz criterion along with its limitations	6
b.	Check the stability for the given characteristic equation using Routh's array $S^{6}+2S^{5}+8S^{4}+12S^{3}+20S^{2}+16S+16 = 0$.	8
c.	State and prove the theorem on BIBO stability.	6
6 a.	Explain the procedure to plot root locus of a given transfer function.	10
b.	For the negative feedback system having,	
	$G(S) = \frac{K(S+1)}{(S+2)(S+3)(S+4)}$	10
	Sketch the root locus with necessary calculations. Show at least one test point plane on the complete plane on root locus where criterion is satisfied.	
UNIT - IV		
7 a.	Explain the correlation between time domain and frequency domain approach.	8
b.	Sketch the bode plot for unity feedback system $G(S) = \frac{80}{S(S+2)(S+2)}$. Determine;	12
	G.M, P.M, W_{gc} and W_{pc} . Comment on stability.	
8 a.	Explain the procedure to plot Nyquist plot.	10
b.	Find the range of R for closed loop stability using Nyquist stability,	10
	$G(S) H(S) = \frac{K(4S+1)}{S(S-1)}, K > 0.$	10
UNIT - V		

UNIT - V

9 a. Define: i) State ii) State variables iii) State vectors. 6 4

- b. List the advantages of state variable analysis.
- c. Obtain an approximate state model for a system represented by electric circuit shown in Fig. 9(c)

10 a. Find the response of the system,

$$X' = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X + \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} U(t)$$

$$X(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} y(t) = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} X$$

$$U(t) = \begin{bmatrix} U_1(t) \\ U_2(t) \end{bmatrix} = \begin{bmatrix} U(t) \\ e^{-3t}U(t) \end{bmatrix}$$
Where $U(t) =$ Unit step input

Where U(t) = Unit step input.

b. Find the transfer function of the system having state model,

$$X' = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X + \begin{bmatrix} 1 \\ 0 \end{bmatrix} U, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} X$$
$$A = \begin{bmatrix} 0 & +1 \\ 2 & -3 \end{bmatrix} B = \begin{bmatrix} 1 \\ 0 \end{bmatrix} C = \begin{bmatrix} 1 & 0 \end{bmatrix} D = 0.$$