## P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Information Science and Engineering
Semester End Examination; May / June - 2018
Finite Automata and Formal Languages
Time: 3 hrs Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.

## UNIT - I

1 a . Define the following with example:
i) Kleene closure
ii) Language
b. Construct a DFA which accepts strings of 0 's and 1's where the value of each string is represented as a binary number. Only the strings representing zero modulo five should be accepted. For example $0000,0101,1010,1111$ etc should be accepted.
c. Design the DFA for the following languages over $\sum\{a, b\}$
i) $L=\left\{w b a b \mid w \in\{a, b\}^{*}\right\}$
ii) $L=\left\{w: n_{a}(w) \geq 1, n_{b}(w)=2\right\}$

2 a. Explain the applications of Finite Automata.
b. Convert the following NFA shown in Fig. 2(b) to its equivalent DFA using lazy evaluation method.

c. Construct a DFA from the NFA shown in Fig. 2(c)


UNIT - II
3 a . Write the regular expression for the following languages :
i) Strings of a's and b's of length $\leq 10$
ii) Strings of 0 's and 1 's are having no two consecutive zero's
iii) Strings of a's and b's with two or more letters but beginning and ending with same letter
iv) $L=\left\{a^{2 n} b^{2 m} \mid n \geq 0, m \geq 0\right\}$
b. Prove that there exists a Finite Automata to accept the language $\mathrm{L}(\mathrm{R})$ corresponding to the regular expression.
c. Obtain a regular expression for the Finite Automata shown in Fig.3(c) using state elimination method.


4 a . List and explain the applications of regular expressions.
b. Shown that the following language is not regular :

$$
L=\left\{w w^{R} \mid w \in(0+1)^{*}\right\} \quad L=\left\{O^{n} \mid n \text { is prime }\right\}
$$

c. Show that if $L$ is a regular language, then the complement of $L$ denoted by $\bar{L}$ is also regular.

## UNIT - III

5 a . Explain the Chomsky hierarchy with an example.
b. Write a grammar to generate an arithmetic expression using the operators,,$+-{ }^{*}$, / and $\wedge$. An identifier can start with any of the letters from $\{a, b, c\}$ and can be followed by zero or more symbols from $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
c. Is the following grammar ambiguous?

$$
\begin{aligned}
& S \rightarrow a S \mid X \\
& X \rightarrow a X \mid a
\end{aligned}
$$

6 a. Eliminate the useless symbols in the grammar:
$S \rightarrow \mathrm{aA} \mid \mathrm{bB}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}$
$\mathrm{B} \rightarrow b \mathrm{~B}$
$D \rightarrow a b \mid E a$
$E \rightarrow a C \mid d$
b. Convert the following grammar into GNF:
$S \rightarrow \mathrm{AB} 1 \mid 0$
$\mathrm{A} \rightarrow 00 \mathrm{~A} \mid \mathrm{B}$
$\mathrm{B} \rightarrow 1 \mathrm{Al}$

## UNIT - IV

7 a. Construct a PDA to accept the language

$$
\begin{equation*}
L(M)=\left\{w C w^{R} \mid w \in(a+b)^{*}\right\} \tag{12}
\end{equation*}
$$

Where $w^{R}$ is reverse of $w$ by a final state. Show the acceptance of the string aabCbaa.
b. Design a PDA to accept the language
$L=\left\{w \mid w \in(a+b) *\right.$ and $\left.n_{a}(w)=n_{b}(w)\right\}$
by an empty stack.

8 a. Obtain a PDA to accept a string of balanced parentheses. The parentheses to be considered are (, ), [, ].
b. Convert the following grammar into PDA :
$S \rightarrow a A B B \mid a A A$
$A \rightarrow a B B \mid a$
$B \rightarrow b B B \mid A$
$C \rightarrow a$

## UNIT - V

9 a . Explain the Turing machine model with a neat diagram.
b. Design a Turing machine model to accept the language
$L=\left\{a^{n} b^{n} \mid n \geq 1\right\}$
10 a . Construct a Turing machine to accept the language
$L=\left\{w \mid w \in(0+1)^{*}\right\}$
Containing the substring 001.
b. Describe a multi-tape Turing machines. 6
c. Explain the Post's correspondence problem with an example. 6

