

- represented as a binary number. Only the strings representing zero modulo five should be accepted. For example 0000, 0101, 1010, 1111 etc should be accepted.
- c. Design the DFA for the following languages over $\sum \{a, b\}$

i)
$$L = \{wbab | w \in \{a, b\}^*\}$$
 ii) $L = \{w : n_a(w) \ge 1, n_b(w) = 2\}$

- 2 a. Explain the applications of Finite Automata.
 - Convert the following NFA shown in Fig. 2(b) to its equivalent DFA using lazy evaluation b. method.

Construct a DFA from the NFA shown in Fig. 2(c) с.

UNIT - II

3 a. Write the regular expression for the following languages :

i) Strings of a's and b's of length ≤ 10

- ii) Strings of 0's and 1's are having no two consecutive zero's
- iii) Strings of a's and b's with two or more letters but beginning and ending with same letter

iv)
$$L = \{a^{2n} b^{2m} | n \ge 0, m \ge 0\}$$

Prove that there exists a Finite Automata to accept the language L(R) corresponding to the regular b. expression.

8

6

6

8

8

6

P15IS43

Page No... 2

6

c. Obtain a regular expression for the Finite Automata shown in Fig.3(c) using state elimination method.

	F(g, 3(c))		
4 a.	List and explain the applications of regular expressions.	4	
b.	Shown that the following language is not regular :		
	$L = \left\{ ww^{R} \mid w \in (0+1)^{*} \right\} \qquad \qquad L = \left\{ O^{n} \mid n \text{ is prime} \right\}$	10	
c.	Show that if L is a regular language, then the complement of L denoted by \overline{L} is also regular.	6	
UNIT - III			
5 a.	Explain the Chomsky hierarchy with an example.	12	
b.	Write a grammar to generate an arithmetic expression using the operators +, -, *, / and ^. An		
	identifier can start with any of the letters from {a, b, c} and can be followed by zero or more	4	
	symbols from {a, b, c}.		
c.	Is the following grammar ambiguous?		
	$S \rightarrow aS \mid X$	4	
	$X \to aX \mid a$		
ба.	Eliminate the useless symbols in the grammar:		
	$S \rightarrow aA \mid bB$		
	$A \rightarrow aA \mid a$ $B \rightarrow bB$	8	
	$D \to ab \mid Ea$		
	$E \rightarrow aC \mid d$		
b.	Convert the following grammar into GNF:		
	$S \rightarrow AB1 \mid 0$	12	
	$A \rightarrow 00A \mid B$ $B \rightarrow 1A1$		
	UNIT - IV		
7 .			
7 a.	Construct a PDA to accept the language		
	$L(M) = \left\{ wCw^{R} \mid w \in (a+b)^{*} \right\}$	12	
	Where w^R is reverse of w by a final state. Show the acceptance of the string aabCbaa.		

b. Design a PDA to accept the language

$$L = \{ w \mid w \in (a+b)^* \text{ and } n_a(w) = n_b(w) \}$$

by an empty stack.

8 a.	P15IS43 Page No 3 Obtain a PDA to accept a string of balanced parentheses. The parentheses to be considered are		
	(,,),[,].	10	
b.	Convert the following grammar into PDA :		
	$S \rightarrow aABB \mid aAA$		
	$A \rightarrow aBB \mid a$	10	
	$B \rightarrow bBB \mid A$		
	$C \rightarrow a$		
UNIT - V			
9 a.	Explain the Turing machine model with a neat diagram.	8	
b.	Design a Turing machine model to accept the language		
	$L = \left\{ a^n b^n \mid n \ge 1 \right\}$	12	
10 a.	Construct a Turing machine to accept the language		
	$L = \{ w \mid w \in (0+1)^* \}$	8	
	Containing the substring 001.		
b.	Describe a multi-tape Turing machines.	6	
c.	Explain the Post's correspondence problem with an example.	6	

* * * *